IDEAS home Printed from https://ideas.repec.org/p/kob/dpaper/139.html
   My bibliography  Save this paper

A Nonsmooth, Nonconvex Model of Optimal Growth

Author

Listed:
  • Takashi Kamihigashi

    (Research Institute for Economics & Business Administration (RIEB), Kobe University, Japan)

  • Santanu Roy

    (Department of Economics, Southern Methodist University, USA)

Abstract

This paper analyzes the nature of economic dynamics in a one-sector optimal growth model in which the technology is generally nonconvex, nondifferentiable, and discontinuous. The model also allows for irreversible investment and unbounded growth. We provide sufficient conditions for boundedness, extinction (convergence to zero), survival (boundedness away from zero), and unbounded growth. These conditions reveal that boundedness and survival are symmetrical phenomena, so are extinction and unbounded growth. Since many of the conditions are only local, it is possible that extinction occurs from small capital stocks, while unbounded growth occurs from large capital stocks. Despite such nonclassical results and nonclassical features such as nonconvexity and discontinuity, the model behaves much like a classical one as the discount factor approaches unity. In particular, we show that in most cases, if the discount factor is close to one, any optimal path from a given initial capital stock converges to a small neighborhood of what we define as the golden rule capital stock. If this stock is not finite, i.e., if sustainable consumption is maximized atinfinity, then as the discount factor approaches one, unbounded growth at least almost occurs.

Suggested Citation

  • Takashi Kamihigashi & Santanu Roy, 2003. "A Nonsmooth, Nonconvex Model of Optimal Growth," Discussion Paper Series 139, Research Institute for Economics & Business Administration, Kobe University.
  • Handle: RePEc:kob:dpaper:139
    as

    Download full text from publisher

    File URL: https://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/dp139.pdf
    File Function: First version, 2003
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Dutta, Prajit K & Mitra, Tapan, 1989. "On Continuity of the Utility Function in Intertemporal Allocation Models: An Example," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 527-536, August.
    3. W. Davis Dechert & Kazuo Nishimura, 2012. "A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 237-257, Springer.
    4. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    5. Jones, Larry E. & Manuelli, Rodolfo E., 1997. "The sources of growth," Journal of Economic Dynamics and Control, Elsevier, vol. 21(1), pages 75-114, January.
    6. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    7. Montrucchio, Luigi, 1995. "A New Turnpike Theorem for Discounted Programs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(3), pages 371-382, May.
    8. Kamihigashi, Takashi, 2003. "Necessity of transversality conditions for stochastic problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 140-149, March.
    9. Kaganovich, Michael, 1998. "Sustained endogenous growth with decreasing returns and heterogeneous capital," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1575-1603, August.
    10. Amir, Rabah & Mirman, Leonard J & Perkins, William R, 1991. "One-Sector Nonclassical Optimal Growth: Optimality Conditions and Comparative Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 625-644, August.
    11. Olson, Lars J. & Roy, Santanu, 1996. "On Conservation of Renewable Resources with Stock-Dependent Return and Nonconcave Production," Journal of Economic Theory, Elsevier, vol. 70(1), pages 133-157, July.
    12. McKenzie, Lionel W., 2005. "Optimal economic growth, turnpike theorems and comparative dynamics," Handbook of Mathematical Economics, in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 2, volume 3, chapter 26, pages 1281-1355, Elsevier.
    13. Takashi Kamihigashi, 2000. "The Policy Function of a Discrete-Choice Problem is a Random Number Generator," The Japanese Economic Review, Japanese Economic Association, vol. 51(1), pages 51-71, March.
    14. Takashi Kamihigashi & Santanu Roy, 2006. "Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 325-340, October.
    15. Costas Azariadis & Allan Drazen, 1990. "Threshold Externalities in Economic Development," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(2), pages 501-526.
    16. Mukul Majumdar & Tapan Mitra & Yaw Nyarko, 1989. "Dynamic Optimization Under Uncertainty: Non-convex Feasible Set," Palgrave Macmillan Books, in: George R. Feiwel (ed.), Joan Robinson and Modern Economic Theory, chapter 19, pages 545-590, Palgrave Macmillan.
    17. Ivar Ekeland & José Alexandre Scheinkman, 1986. "Transversality Conditions for Some Infinite Horizon Discrete Time Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 216-229, May.
    18. Yano, Makoto, 1984. "Competitive Equilibria on Turnpikes in a McKenzie Economy, I: A Neighborhood Turnpike Theorem," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 695-717, October.
    19. D. McFadden, 1967. "The Evaluation of Development Programmes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(1), pages 25-50.
    20. J. Dolmas, 2010. "Endogenous Growth with Multisector Ramsey Models," Levine's Working Paper Archive 1383, David K. Levine.
    21. Joshi, Sumit, 1997. "Turnpike Theorems in Nonconvex Nonstationary Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 225-248, February.
    22. Guerrero-Luchtenberg, C.L., 2000. "A uniform neighborhood turnpike theorem and applications," Journal of Mathematical Economics, Elsevier, vol. 34(3), pages 329-357, November.
    23. Montrucchio, Luigi, 1994. "The neighbourhood turnpike property for continuous-time optimal growth models," Ricerche Economiche, Elsevier, vol. 48(3), pages 213-224, September.
    24. Takashi Kamihigashi, 2000. "Indivisible labor implies chaos," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(3), pages 585-598.
    25. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
    26. Dolmas, Jim, 1996. "Endogenous Growth in Multisector Ramsey Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 403-421, May.
    27. Larry E. Jones & Rodolfo Manuelli, 1990. "A Convex Model of Equilibrium Growth," NBER Working Papers 3241, National Bureau of Economic Research, Inc.
    28. Jones, Larry E & Manuelli, Rodolfo E, 1990. "A Convex Model of Equilibrium Growth: Theory and Policy Implications," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 1008-1038, October.
    29. Donald M. Topkis, 1978. "Minimizing a Submodular Function on a Lattice," Operations Research, INFORMS, vol. 26(2), pages 305-321, April.
    30. de Hek, Paul & Roy, Santanu, 2001. "On Sustained Growth under Uncertainty," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 801-813, August.
    31. McKenzie, Lionel W., 1982. "A primal route to the Turnpike and Liapounov stability," Journal of Economic Theory, Elsevier, vol. 27(1), pages 194-209, June.
    32. Mukul Majumdar & Tapan Mitra, 1983. "Dynamic Optimization with a Non-Convex Technology: The Case of a Linear Objective Function," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(1), pages 143-151.
    33. Alexandre Scheinkman, Jose, 1976. "On optimal steady states of n-sector growth models when utility is discounted," Journal of Economic Theory, Elsevier, vol. 12(1), pages 11-30, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ha-Huy, Thai & Tran, Nhat Thien, 2020. "A simple characterisation for sustained growth," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 141-147.
    2. Ken-Ichi Akao & Takashi Kamihigashi & Kazuo Nishimura, 2015. "Critical Capital Stock in a Continuous-Time Growth Model with a Convex-Concave Production Function," Discussion Paper Series DP2015-39, Research Institute for Economics & Business Administration, Kobe University.
    3. Jensen, Martin Kaae, 2012. "Global stability and the “turnpike” in optimal unbounded growth models," Journal of Economic Theory, Elsevier, vol. 147(2), pages 802-832.
    4. Thanh Tam Nguyen-Huu & Ngoc-Sang Pham, 2021. "Escaping the middle income trap and getting economic growth: How does FDI can help the host country?," Working Papers halshs-03143087, HAL.
    5. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
    6. Azariadis, Costas & Stachurski, John, 2005. "Poverty Traps," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 5, Elsevier.
    7. N. Hung & C. Le Van & P. Michel, 2009. "Non-convex aggregate technology and optimal economic growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(3), pages 457-471, September.
    8. Kaganovich, Michael, 1998. "Sustained endogenous growth with decreasing returns and heterogeneous capital," Journal of Economic Dynamics and Control, Elsevier, vol. 22(10), pages 1575-1603, August.
    9. Thanh Tam Nguyen-Huu & Ngoc‐sang Pham, 2023. "FDI spillovers, New Industry Development, and Economic Growth," Post-Print hal-04240260, HAL.
    10. Takashi Kamihigashi, 2014. "Elementary results on solutions to the bellman equation of dynamic programming: existence, uniqueness, and convergence," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(2), pages 251-273, June.
    11. Takashi Kamihigashi & Santanu Roy, 2006. "Dynamic optimization with a nonsmooth, nonconvex technology: the case of a linear objective function," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(2), pages 325-340, October.
    12. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    13. Santanu Roy, 2010. "On sustained economic growth with wealth effects," International Journal of Economic Theory, The International Society for Economic Theory, vol. 6(1), pages 29-45, March.
    14. Pham, Ngoc-Sang & Pham, Thi Kim Cuong, 2020. "Effects of foreign aid on the recipient country’s economic growth," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 52-68.
    15. Thomas M. Steger, 2000. "Productive Consumption and Growth in Developing Countries," Review of Development Economics, Wiley Blackwell, vol. 4(3), pages 365-375, October.
    16. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2012. "Stochastic Optimal Growth with Nonconvexities," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 261-288, Springer.
    17. Augeraud-Veron, Emmanuelle & Boucekkine, Raouf & Gozzi, Fausto & Venditti, Alain & Zou, Benteng, 2024. "Fifty years of mathematical growth theory: Classical topics and new trends," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    18. Long, N.V. & Wong, K.Y., 1996. "Endogenous Growth and International Trade: A Survey," Working Papers 96-07, University of Washington, Department of Economics.
    19. Akao, Ken-Ichi & Kamihigashi, Takashi & Nishimura, Kazuo, 2011. "Monotonicity and continuity of the critical capital stock in the Dechert–Nishimura model," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 677-682.
    20. Jones, Larry E. & Manuelli, Rodolfo E., 2005. "Neoclassical Models of Endogenous Growth: The Effects of Fiscal Policy, Innovation and Fluctuations," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 1, pages 13-65, Elsevier.

    More about this item

    Keywords

    Nonconvex; nonsmooth; and discontinuous technology; Optimal growth; Unbounded growth; Extinction; Neighborhood turnpike;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University (email available below). General contact details of provider: https://edirc.repec.org/data/rikobjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.