IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp8411.html
   My bibliography  Save this paper

Which Schools and Pupils Respond to Educational Achievement Surveys? A Focus on the English PISA Sample

Author

Listed:
  • Schnepf, Sylke V.

    (European Commission, DG Joint Research Centre)

  • Durrant, Gabriele B.

    (University of Southampton)

  • Micklewright, John

    (University College London)

Abstract

Using logistic and multilevel logistic modelling we examine non-response at the school and pupil level to the important educational achievement survey Programme for International Student Assessment (PISA) for England. The analysis exploits unusually rich auxiliary information on all schools and pupils sampled for PISA whether responding or not, including data from two large-scale administrative sources on pupils' results in national public exams, which correlate highly with the PISA target variable. Results show that characteristics associated with non-response differ between the school and pupil levels. The findings have important implications for the survey design of education data.

Suggested Citation

  • Schnepf, Sylke V. & Durrant, Gabriele B. & Micklewright, John, 2014. "Which Schools and Pupils Respond to Educational Achievement Surveys? A Focus on the English PISA Sample," IZA Discussion Papers 8411, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp8411
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp8411.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jon Rasbash & George Leckie & Rebecca Pillinger & Jennifer Jenkins, 2010. "Children's educational progress: partitioning family, school and area effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 657-682, July.
    2. F. Kreuter & K. Olson & J. Wagner & T. Yan & T. M. Ezzati‐Rice & C. Casas‐Cordero & M. Lemay & A. Peytchev & R. M. Groves & T. E. Raghunathan, 2010. "Using proxy measures and other correlates of survey outcomes to adjust for non‐response: examples from multiple surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 389-407, April.
    3. Gabriele B. Durrant & Fiona Steele, 2009. "Multilevel modelling of refusal and non‐contact in household surveys: evidence from six UK Government surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 361-381, April.
    4. repec:mpr:mprres:4937 is not listed on IDEAS
    5. John F. Y. Brookfield, 2001. "Predicting the future," Nature, Nature, vol. 411(6841), pages 999-999, June.
    6. Denise Hawkes & Ian Plewis, 2006. "Modelling non‐response in the National Child Development Study," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 479-491, July.
    7. W. J. Browne & S. V. Subramanian & K. Jones & H. Goldstein, 2005. "Variance partitioning in multilevel logistic models that exhibit overdispersion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(3), pages 599-613, July.
    8. George Leckie & Harvey Goldstein, 2011. "Understanding Uncertainty in School League Tables," Fiscal Studies, Institute for Fiscal Studies, vol. 32(2), pages 207-224, June.
    9. Lorraine Dearden & Alfonso Miranda & Sophia Rabe‐Hesketh, 2011. "Measuring School Value Added with Administrative Data: The Problem of Missing Variables," Fiscal Studies, Institute for Fiscal Studies, vol. 32(2), pages 263-278, June.
    10. repec:mpr:mprres:4780 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sprietsma, Maresa, 2016. "Which incentives to increase survey response of secondary school pupils?," ZEW Discussion Papers 16-071, ZEW - Leibniz Centre for European Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele B. Durrant & Sylke V. Schnepf, 2018. "Which schools and pupils respond to educational achievement surveys?: a focus on the English Programme for International Student Assessment sample," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1057-1075, October.
    2. Steele, Fiona & Durrant, Gabriele B., 2011. "Alternative approaches to multilevel modelling of survey non-contact and refusal," LSE Research Online Documents on Economics 50113, London School of Economics and Political Science, LSE Library.
    3. Juan Merlo & Philippe Wagner & Nermin Ghith & George Leckie, 2016. "An Original Stepwise Multilevel Logistic Regression Analysis of Discriminatory Accuracy: The Case of Neighbourhoods and Health," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-31, April.
    4. Durrant Gabriele B. & Maslovskaya Olga & Smith Peter W. F., 2017. "Using Prior Wave Information and Paradata: Can They Help to Predict Response Outcomes and Call Sequence Length in a Longitudinal Study?," Journal of Official Statistics, Sciendo, vol. 33(3), pages 801-833, September.
    5. Lucy Prior & John Jerrim & Dave Thomson & George Leckie, 2021. "A review and evaluation of secondary school accountability in England: Statistical strengths, weaknesses, and challenges for ‘Progress 8’ raised by COVID-19," DoQSS Working Papers 21-12, Quantitative Social Science - UCL Social Research Institute, University College London.
    6. Kristen Olson, 2013. "Paradata for Nonresponse Adjustment," The ANNALS of the American Academy of Political and Social Science, , vol. 645(1), pages 142-170, January.
    7. Plewis Ian & Shlomo Natalie, 2017. "Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies," Journal of Official Statistics, Sciendo, vol. 33(3), pages 753-779, September.
    8. Lucy Prior & John Jerrim & Dave Thomson & George Leckie, 2021. "A review and evaluation of secondary school accountability in England: Statistical strengths, weaknesses, and challenges for 'Progress 8' raised by COVID-19," CEPEO Working Paper Series 21-04, UCL Centre for Education Policy and Equalising Opportunities, revised Apr 2021.
    9. Arnhild Myhr & Monica Lillefjell & Geir Arild Espnes & Thomas Halvorsen, 2017. "Do family and neighbourhood matter in secondary school completion? A multilevel study of determinants and their interactions in a life-course perspective," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    10. Elias Giannakis & Sophia Efstratoglou & Artemis Antoniades, 2018. "Off-Farm Employment and Economic Crisis: Evidence from Cyprus," Agriculture, MDPI, vol. 8(3), pages 1-11, March.
    11. David Cutler & Kaushik Ghosh & Irina Bondarenko & Kassandra Messer & Trivellore Raghunathan & Susan Stewart & Allison B. Rosen, 2018. "Attributing Medical Spending to Conditions: A Comparison of Methods," NBER Working Papers 25233, National Bureau of Economic Research, Inc.
    12. Natasha Wood & David Bann & Rebecca Hardy & Catharine Gale & Alissa Goodman & Claire Crawford & Mai Stafford, 2017. "Childhood socioeconomic position and adult mental wellbeing: Evidence from four British birth cohort studies," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-13, October.
    13. Alireza Rezaee & Mojtaba Ganjali & Ehsan Bahrami Samani, 2022. "Sample selection bias with multiple dependent selection rules: an application to survey data analysis with multilevel nonresponse," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 158(1), pages 1-15, December.
    14. Adams, Leen & Faseur, Tineke & Geuens, Maggie, 2010. "The Influence of the Self-Regulatory Focus on the Effectiveness of Stop-Smoking Campaigns for Young Smokers," Working Papers 2010/38, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    15. Roger Tourangeau & J. Michael Brick & Sharon Lohr & Jane Li, 2017. "Adaptive and responsive survey designs: a review and assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 203-223, January.
    16. Sijia Huang & Li Cai, 2024. "Cross-Classified Item Response Theory Modeling With an Application to Student Evaluation of Teaching," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 311-341, June.
    17. Cheti Nicoletti & Birgitta Rabe, 2013. "Inequality in Pupils' Test Scores: How Much do Family, Sibling Type and Neighbourhood Matter?," Economica, London School of Economics and Political Science, vol. 80(318), pages 197-218, April.
    18. Black, Nicole & Johnston, David W. & Propper, Carol & Shields, Michael A., 2019. "The effect of school sports facilities on physical activity, health and socioeconomic status in adulthood," Social Science & Medicine, Elsevier, vol. 220(C), pages 120-128.
    19. Vedrenne, Michel & Pérez, Javier & Lumbreras, Julio & Rodríguez, María Encarnación, 2014. "Life cycle assessment as a policy-support tool: The case of taxis in the city of Madrid," Energy Policy, Elsevier, vol. 66(C), pages 185-197.
    20. Anoop Jain & Lia C.H. Fernald & Kirk R. Smith & S.V. Subramanian, 2019. "Sanitation in Rural India: Exploring the Associations between Dwelling Space and Household Latrine Ownership," IJERPH, MDPI, vol. 16(5), pages 1-14, February.

    More about this item

    Keywords

    data linkage; survey design; Programme for International Student Assessment (PISA); non-response; educational achievement survey;
    All these keywords.

    JEL classification:

    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp8411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.