IDEAS home Printed from https://ideas.repec.org/a/spr/sjecst/v158y2022i1d10.1186_s41937-022-00089-1.html
   My bibliography  Save this article

Sample selection bias with multiple dependent selection rules: an application to survey data analysis with multilevel nonresponse

Author

Listed:
  • Alireza Rezaee

    (Shahid Beheshti University)

  • Mojtaba Ganjali

    (Shahid Beheshti University)

  • Ehsan Bahrami Samani

    (Shahid Beheshti University)

Abstract

The microdata of surveys are valuable resources for analyzing and modeling relationships between variables of interest. These microdata are often incomplete because of nonresponses in surveys and, if not considered, may lead to model misspecification and biased results. Nonresponse variable is usually assumed as a binary variable, and it is used to construct a sample selection model in many researches. However, this variable is a multilevel variable related to its reasons of occurring. Missing mechanism may differ among the levels of nonresponse, and merging the levels of nonresponse may cause bias in the results of the analysis. In this paper, a method is proposed for analyzing survey data with respect to reasons for the nonresponse based on sample selection model. Each nonresponse level is considered as a selection rule, and classical Heckman model is extended. Simulation studies and an analysis of a real data set from an establishment survey are presented to demonstrate the performance and practical usefulness of the proposed method.

Suggested Citation

  • Alireza Rezaee & Mojtaba Ganjali & Ehsan Bahrami Samani, 2022. "Sample selection bias with multiple dependent selection rules: an application to survey data analysis with multilevel nonresponse," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 158(1), pages 1-15, December.
  • Handle: RePEc:spr:sjecst:v:158:y:2022:i:1:d:10.1186_s41937-022-00089-1
    DOI: 10.1186/s41937-022-00089-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41937-022-00089-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s41937-022-00089-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Durrant, Gabriele B. & Steele, Fiona, 2009. "Multilevel modelling of refusal and non-contact in household surveys: evidence from six UK Government surveys," LSE Research Online Documents on Economics 50112, London School of Economics and Political Science, LSE Library.
    3. Gabriele B. Durrant & Fiona Steele, 2009. "Multilevel modelling of refusal and non‐contact in household surveys: evidence from six UK Government surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 361-381, April.
    4. Christoph Engel & Peter G. Moffatt, 2014. "dhreg, xtdhreg, and bootdhreg: Commands to implement double-hurdle regression," Stata Journal, StataCorp LP, vol. 14(4), pages 778-797, December.
    5. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    6. Rebecca Vassallo & Gabriele B. Durrant & Peter W. F. Smith & Harvey Goldstein, 2015. "Interviewer effects on non-response propensity in longitudinal surveys: a multilevel modelling approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 83-99, January.
    7. Catsiapis, George & Robinson, Chris, 1982. "Sample selection bias with multiple selection rules : An application to student aid grants," Journal of Econometrics, Elsevier, vol. 18(3), pages 351-368, April.
    8. Jolani, Shahab, 2014. "An analysis of longitudinal data with nonignorable dropout using the truncated multivariate normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 163-173.
    9. Christian Seiler, 2010. "Dynamic Modelling of Nonresponse in Business Surveys," ifo Working Paper Series 93, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    10. Steele, Fiona & Durrant, Gabriele B., 2011. "Alternative approaches to multilevel modelling of survey non-contact and refusal," LSE Research Online Documents on Economics 50113, London School of Economics and Political Science, LSE Library.
    11. Lee, Lung-fei & Maddala, G S & Trost, R P, 1980. "Asymptotic Covariance Matrices of Two-Stage Probit and Two-Stage Tobit Methods for Simultaneous Equations Models with Selectivity," Econometrica, Econometric Society, vol. 48(2), pages 491-503, March.
    12. George Catsiapis & Chris Robinson, 1978. "Sample Selection Bias with Two Selection Rules: An Application to Student Aid Grants," University of Western Ontario, Departmental Research Report Series 7833, University of Western Ontario, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia, Serge & Harou, Patrice & Montagné, Claire & Stenger, Anne, 2009. "Models for sample selection bias in contingent valuation: Application to forest biodiversity," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 59-78, January.
    2. Margaret Giles, 2003. "Correcting for selectivity bias in the estimation of road crash costs," Applied Economics, Taylor & Francis Journals, vol. 35(11), pages 1291-1301.
    3. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    4. Kim, Dongha & Jeong, Jinook, 2016. "Electricity restructuring, greenhouse gas emissions efficiency and employment reallocation," Energy Policy, Elsevier, vol. 92(C), pages 468-476.
    5. Rebecca Vassallo & Gabriele Durrant & Peter Smith, 2017. "Separating interviewer and area effects by using a cross-classified multilevel logistic model: simulation findings and implications for survey designs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 531-550, February.
    6. Walter Corson & Sharon Long & Rebecca Maynard, "undated". "An Impact Evaluation of the Buffalo Dislocated Worker Demonstration Program," Mathematica Policy Research Reports af28404bf07c4115b28e62d2b, Mathematica Policy Research.
    7. Hans A. Holter & Dirk Krueger & Serhiy Stepanchuk, 2019. "How do tax progressivity and household heterogeneity affect Laffer curves?," Quantitative Economics, Econometric Society, vol. 10(4), pages 1317-1356, November.
    8. Renuka Sane & Susan Thomas, 2020. "From Participation To Repurchase: Low Income Households And Micro‐insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(3), pages 783-814, September.
    9. Michael Ziegelmeyer & Julius Nick, 2013. "Backing out of private pension provision: lessons from Germany," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 40(3), pages 505-539, August.
    10. Yuen Leng Chow & Isa E. Hafalir & Abdullah Yavas, 2015. "Auction versus Negotiated Sale: Evidence from Real Estate Sales," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 43(2), pages 432-470, June.
    11. Xavier Ramos Morilla & Josep Lluís Raymond Bara & Josep Oliver Alonso, 1999. "Not All University Degrees Yield the Same Return: Private and Social Returns to Higher Education for Males in Spain," Working Papers wpdea9904, Department of Applied Economics at Universitat Autonoma of Barcelona.
    12. P.W. Miller & S. Rummery, 1989. "Gender Wage Discrimination in Australia: A reassessment," Economics Discussion / Working Papers 89-21, The University of Western Australia, Department of Economics.
    13. Giovanna Culot & Matteo Podrecca & Guido Nassimbeni & Guido Orzes & Marco Sartor, 2023. "Using supply chain databases in academic research: A methodological critique," Journal of Supply Chain Management, Institute for Supply Management, vol. 59(1), pages 3-25, January.
    14. John Simon & Tahlee Stone, 2017. "The Property Ladder after the Financial Crisis: The First Step is a Stretch but Those Who Make It Are Doing OK," RBA Research Discussion Papers rdp2017-05, Reserve Bank of Australia.
    15. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    16. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    17. Aldashev, Alisher & Gernandt, Johannes & Thomsen, Stephan L., 2009. "Language usage, participation, employment and earnings: Evidence for foreigners in West Germany with multiple sources of selection," Labour Economics, Elsevier, vol. 16(3), pages 330-341, June.
    18. Arndt Reichert & Harald Tauchmann, 2014. "When outcome heterogeneously matters for selection: a generalized selection correction estimator," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 762-768, March.
    19. Eric Rasmusen, 1995. "Observed Choice, Estimation, and Optimism About Policy Changes," Econometrics 9506004, University Library of Munich, Germany, revised 16 Jun 1995.
    20. Rama Lionel Ngenzebuke, 2016. "Female say on income and child outcomes: Evidence from Nigeria," WIDER Working Paper Series 134, World Institute for Development Economic Research (UNU-WIDER).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sjecst:v:158:y:2022:i:1:d:10.1186_s41937-022-00089-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.