IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp15799.html
   My bibliography  Save this paper

A Complete Framework for Model-Free Difference-in-Differences Estimation

Author

Listed:
  • Henderson, Daniel J.

    (University of Alabama)

  • Sperlich, Stefan

    (University of Geneva)

Abstract

We propose a complete framework for model-free difference-in-differences analysis with covariates, where model-free means data-driven, in particular nonparametric estimation and testing, variable and scale choice. We start with searching for the preferred data setup by simultaneously choosing confounders and a scale of the outcome variable along identification conditions. The treatment effects themselves are estimated in two steps: first, the heterogeneous effects stratified along the covariates, then the average treatment effect(s) for the population(s) of interest. We provide the asymptotic statistics as well as the finite sample behavior of our methods, and suggest bootstrap procedures to calculate standard errors and p-values of significance tests. The pertinence of our methods is shown with a study of the impact of the Deferred Action for Childhood Arrivals program on human capital responses of non-citizen immigrants. We show that past results underestimated the positive impact on school attendance for individuals aged 14-18, and the positive impact on high school completion. Moreover, we find that the parametric methods fail to identify the negative impact on school attendance of college aged individuals. Practical issues including bandwidth selection, sample weights, and implementation are given in the supplement.

Suggested Citation

  • Henderson, Daniel J. & Sperlich, Stefan, 2022. "A Complete Framework for Model-Free Difference-in-Differences Estimation," IZA Discussion Papers 15799, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp15799
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp15799.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    2. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    3. Chi-Yang Chu & Daniel J. Henderson & Christopher F. Parmeter, 2015. "Plug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data," Econometrics, MDPI, vol. 3(2), pages 1-16, March.
    4. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    5. Stefan Sperlich, 2014. "On the choice of regularization parameters in specification testing: a critical discussion," Empirical Economics, Springer, vol. 47(2), pages 427-450, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tran, Nhan, 2023. "The effects of deferred action for childhood arrivals on labor market outcomes," MPRA Paper 118496, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Sperlich, 2022. "Comments on: hybrid semiparametric Bayesian networks," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 335-339, June.
    2. Taisuke Otsu & Yoshiyasu Rai, 2017. "Bootstrap Inference of Matching Estimators for Average Treatment Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1720-1732, October.
    3. James G. MacKinnon, 2007. "Bootstrap Hypothesis Testing," Working Paper 1127, Economics Department, Queen's University.
    4. van de Walle, Dominique & Mu, Ren, 2007. "Fungibility and the flypaper effect of project aid: Micro-evidence for Vietnam," Journal of Development Economics, Elsevier, vol. 84(2), pages 667-685, November.
    5. David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
    6. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    7. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    8. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    9. Jan Fałkowski & Maciej Jakubowski & Paweł Strawiński, 2014. "Returns from income strategies in rural Poland," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 22(1), pages 139-178, January.
    10. Michael Lechner & Ruth Miquel & Conny Wunsch, 2011. "Long‐Run Effects Of Public Sector Sponsored Training In West Germany," Journal of the European Economic Association, European Economic Association, vol. 9(4), pages 742-784, August.
    11. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    12. Tymon Słoczyński, 2015. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
    13. Lin, Jenny X. & Lincoln, William F., 2017. "Pirate's treasure," Journal of International Economics, Elsevier, vol. 109(C), pages 235-245.
    14. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    15. Hirota, Haruaki & Yunoue, Hideo, 2017. "Evaluation of the fiscal effect on municipal mergers: Quasi-experimental evidence from Japanese municipal data," Regional Science and Urban Economics, Elsevier, vol. 66(C), pages 132-149.
    16. Loris Guery & Anne Stevenot & Geoffrey T. Wood & Chris Brewster, 2017. "The Impact of Private Equity on Employment: The Consequences of Fund Country of Origin—New Evidence from France," Industrial Relations: A Journal of Economy and Society, Wiley Blackwell, vol. 56(4), pages 723-750, October.
    17. Besstremyannaya, Galina, 2015. "Measuring the effect of health insurance companies on the quality of healthcare systems with kernel and parametric regressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 3-20.
    18. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    19. Lo Turco, Alessia & Maggioni, Daniela, 2013. "Does Trade Foster Employment Growth in Emerging Markets? Evidence from Turkey," World Development, Elsevier, vol. 52(C), pages 1-18.
    20. Lakdawalla, Darius N. & Seabury, Seth A., 2012. "The welfare effects of medical malpractice liability," International Review of Law and Economics, Elsevier, vol. 32(4), pages 356-369.

    More about this item

    Keywords

    difference-in-differences estimators; causal analysis; nonparametrics; heterogeneous treatment effects;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • A2 - General Economics and Teaching - - Economic Education and Teaching of Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp15799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.