IDEAS home Printed from https://ideas.repec.org/p/iuj/wpaper/ems_2010_20.html
   My bibliography  Save this paper

Identifying Barriers for the Implementation and the Operation of Biogas Power Generation Projects in Southeast Asia: An Analysis of Clean Development Mechanism Projects in Thailand

Author

Listed:
  • Masachika Suzuki

    (Kansai University)

  • Bernardo Okazaki Kehdy

    (MBA Program, IMRE (International Management of Resources and Environment))

  • Sulabh Jain

    (MBA Program, IMRE (International Management of Resources and Environment))

Abstract

Tapioca starch and palm oil industries are considered as ones of the fast-growing agro-industries in Thailand. Both industries release a significant amount of wastewater with high organic content as a result of their production processes. Traditionally, open pond systems have been used to treat wastewater and consequently achieve compliance with environmental standards. Over the last few years however, more sustainable, expensive and modern alternatives have begun to be used to treat wastewater (mainly anaerobic reactors). The start of clean development mechanism (CDM) projects in Thailand has also contributed significantly to this expansion.1 One significant advantage of the anaerobic reactors, over the open ponds, is the possibility of capturing, in a controlled environment, the greenhouse gases (GHGs) generated, principally biogas with a high concentration of methane. The biogas can be used to generate heat and/or produce electricity, substituting fossil fuels as an energy source. The number of biogas utilization projects in Thailand and the Southeast Asia region has been increasing substantially in recent years. While a biogas plant can bring economic benefits with respect to energy self-sufficiency and cost-saving over time, the design and operation of a biogas plant requires high investments and is still perceived as a risky business due to a number of barriers. In addition, actual data from biogas plants indicate that the performance of a biogas plant with respect to the amount of biogas is not as attractive as it was initially expected among the project developers. Even though many literatures show the performance of biogas plants in certain experimental conditions, surprisingly, few literatures have explained or have shown data about the low performance of the biogas plants compared to the expected projected performance or design. The purpose of this study is to identify these barriers in biogas technology implementation and operation in Thailand, and to determine how these barriers lower the performance of the biogas business. The study was conducted based on the analysis of 48 selected CDM projects in Thailand and further analysis through consultation with relevant professionals in CDM and the biogas business in Thailand. The results of this study provide important lessons for future biogas utilization and greenhouse gas emission reductions in the Southeast Asian region.

Suggested Citation

  • Masachika Suzuki & Bernardo Okazaki Kehdy & Sulabh Jain, 2010. "Identifying Barriers for the Implementation and the Operation of Biogas Power Generation Projects in Southeast Asia: An Analysis of Clean Development Mechanism Projects in Thailand," Working Papers EMS_2010_20, Research Institute, International University of Japan.
  • Handle: RePEc:iuj:wpaper:ems_2010_20
    as

    Download full text from publisher

    File URL: https://www.iuj.ac.jp/workingpapers/index.cfm?File=EMS_2010_20.pdf
    File Function: First version, 2010
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O. Chavalparit & W.H. Rulkens & A.P.J. Mol & S. Khaodhair, 2006. "Options For Environmental Sustainability Of The Crude Palm Oil Industry In Thailand Through Enhancement Of Industrial Ecosystems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(2), pages 271-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luthra, Sunil & Kumar, Sanjay & Garg, Dixit & Haleem, Abid, 2015. "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 762-776.
    2. Masachika Suzuki, 2014. "Addressing key issues in technology innovation and transfer of clean energy technologies: a focus on enhancing the enabling environment in the developing countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(2), pages 157-169, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    2. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    3. Singh, R.P. & Embrandiri, A. & Ibrahim, M.H. & Esa, N., 2011. "Management of biomass residues generated from palm oil mill: Vermicomposting a sustainable option," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 423-434.
    4. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    5. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    6. Ohimain, Elijah I. & Izah, Sylvester C., 2014. "Energy self-sufficiency of smallholder oil palm processing in Nigeria," Renewable Energy, Elsevier, vol. 63(C), pages 426-431.
    7. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    8. Patthanaissaranukool, Withida & Polprasert, Chongchin & Englande, Andrew J., 2013. "Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances," Applied Energy, Elsevier, vol. 102(C), pages 710-717.
    9. Gernot Pehnelt & Christoph Vietze, 2013. "Recalculating GHG emissions saving of palm oil biodiesel," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(2), pages 429-479, April.
    10. Ohimain, Elijah Ige & Izah, Sylvester Chibueze, 2017. "A review of biogas production from palm oil mill effluents using different configurations of bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 242-253.
    11. Kelechi E. Anyaoha & Lulu Zhang, 2023. "Technology-based comparative life cycle assessment for palm oil industry: the case of Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4575-4595, May.
    12. Ahmad, Ashfaq & Buang, Azizul & Bhat, A.H., 2016. "Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 214-234.
    13. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    14. Gernot Pehnelt & Christoph Vietze, 2011. "Recalculating Default Values for Palm Oil," Jena Economics Research Papers 2011-037, Friedrich-Schiller-University Jena.
    15. Goh, Chun Sheng & Lee, Keat Teong, 2010. "Palm-based biofuel refinery (PBR) to substitute petroleum refinery: An energy and emergy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2986-2995, December.
    16. Foo, K.Y. & Hameed, B.H., 2009. "Utilization of biodiesel waste as a renewable resource for activated carbon: Application to environmental problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2495-2504, December.
    17. Mohammadtaghi Vakili & Mohd. Rafatullah & Mahamad Ibrahim & Babak Salamatinia & Zahra Gholami & Haider Zwain, 2015. "A review on composting of oil palm biomass," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 691-709, August.
    18. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2013. "Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 454-462.
    19. Elijah I. Ohimain & Sylvester C. Izah, 2015. "Energy Self-Sufficiency of Semi-Mechanized Oil Palm Processing: A Case Study of Bayelsa Palm Mill, Elebele, Nigeria," Energy Economics Letters, Asian Economic and Social Society, vol. 2(3), pages 35-45, September.
    20. Muthita Tepsour & Nikannapas Usmanbaha & Thiwa Rattanaya & Rattana Jariyaboon & Sompong O-Thong & Poonsuk Prasertsan & Prawit Kongjan, 2019. "Biogas Production from Oil Palm Empty Fruit Bunches and Palm Oil Decanter Cake using Solid-State Anaerobic co-Digestion," Energies, MDPI, vol. 12(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iuj:wpaper:ems_2010_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kazumi Imai, Office of Academic Affairs (email available below). General contact details of provider: https://edirc.repec.org/data/gsiujjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.