IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i9p2495-2504.html
   My bibliography  Save this article

Utilization of biodiesel waste as a renewable resource for activated carbon: Application to environmental problems

Author

Listed:
  • Foo, K.Y.
  • Hameed, B.H.

Abstract

Stepping into the new globalized and paradigm shifted era, a huge revolution has been undergone by the oil palm industry. From a humble source of the edible oil, today oil palm has demonstrated a wide variety of uses, almost by every part of its plant. With the price of the crude petroleum hitting record height every other day, the feasibility of palm oil and oil palm biomass as renewable substitutes for the production of biodiesel has been proposed. Lately, its development has received various criticisms, mainly hinges on the huge generation of solid residues which are currently no profitable use. In view of the aforementioned reason, this paper presents a state-of-the-art review of oil palm industry, its fundamental background studies, propagation and industrial applications. Moreover, the recent developments on the preparation of activated carbons from oil palm waste, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expansion of oil palm waste in the field of adsorption science represents a potentially viable and powerful tool, leading to the superior improvement of pollution control and environmental conservation.

Suggested Citation

  • Foo, K.Y. & Hameed, B.H., 2009. "Utilization of biodiesel waste as a renewable resource for activated carbon: Application to environmental problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2495-2504, December.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:9:p:2495-2504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00100-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshihito Shirai & Minato Wakisaka & Shahrakbah Yacob & Mohd Ali Hassan & Shin’ichi Suzuki, 2003. "Reduction of Methane Released from Palm Oil Mill Lagoon in Malaysia and Its Countermeasures," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(3), pages 237-252, September.
    2. Sumathi, S. & Chai, S.P. & Mohamed, A.R., 2008. "Utilization of oil palm as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2404-2421, December.
    3. Dalimin, Mohd Noh, 1995. "Renewable energy update: Malaysia," Renewable Energy, Elsevier, vol. 6(4), pages 435-439.
    4. Prasertsan, S. & Sajjakulnukit, B., 2006. "Biomass and biogas energy in Thailand: Potential, opportunity and barriers," Renewable Energy, Elsevier, vol. 31(5), pages 599-610.
    5. Kelly-Yong, Tau Len & Lee, Keat Teong & Mohamed, Abdul Rahman & Bhatia, Subhash, 2007. "Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide," Energy Policy, Elsevier, vol. 35(11), pages 5692-5701, November.
    6. O. Chavalparit & W.H. Rulkens & A.P.J. Mol & S. Khaodhair, 2006. "Options For Environmental Sustainability Of The Crude Palm Oil Industry In Thailand Through Enhancement Of Industrial Ecosystems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(2), pages 271-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    2. Foo, K.Y., 2015. "A vision on the opportunities, policies and coping strategies for the energy security and green energy development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1477-1498.
    3. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    4. Foo, K.Y. & Hameed, B.H., 2010. "Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1445-1452, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ohimain, Elijah I. & Izah, Sylvester C., 2014. "Energy self-sufficiency of smallholder oil palm processing in Nigeria," Renewable Energy, Elsevier, vol. 63(C), pages 426-431.
    2. Foo, K.Y. & Hameed, B.H., 2010. "Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1445-1452, June.
    3. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    4. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    5. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    6. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    7. Patthanaissaranukool, Withida & Polprasert, Chongchin & Englande, Andrew J., 2013. "Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances," Applied Energy, Elsevier, vol. 102(C), pages 710-717.
    8. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    9. Ohimain, Elijah Ige & Izah, Sylvester Chibueze, 2017. "A review of biogas production from palm oil mill effluents using different configurations of bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 242-253.
    10. Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2011. "Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: Status, potential and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4521-4536.
    11. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    12. Thomas, Blessen Skariah & Kumar, Sanjeev & Arel, Hasan Sahan, 2017. "Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 550-561.
    13. Derman, Eryati & Abdulla, Rahmath & Marbawi, Hartinie & Sabullah, Mohd Khalizan, 2018. "Oil palm empty fruit bunches as a promising feedstock for bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 129(PA), pages 285-298.
    14. Goh, Chun Sheng & Lee, Keat Teong, 2010. "Palm-based biofuel refinery (PBR) to substitute petroleum refinery: An energy and emergy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2986-2995, December.
    15. Mohammadtaghi Vakili & Mohd. Rafatullah & Mahamad Ibrahim & Babak Salamatinia & Zahra Gholami & Haider Zwain, 2015. "A review on composting of oil palm biomass," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 691-709, August.
    16. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    17. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2013. "Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 454-462.
    18. Garcia-Nunez, Jesus Alberto & Ramirez-Contreras, Nidia Elizabeth & Rodriguez, Deisy Tatiana & Silva-Lora, Electo & Frear, Craig Stuart & Stockle, Claudio & Garcia-Perez, Manuel, 2016. "Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 99-114.
    19. Shekarchian, M. & Moghavvemi, M. & Mahlia, T.M.I. & Mazandarani, A., 2011. "A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2629-2642, August.
    20. Kong, Sieng-Huat & Loh, Soh-Kheang & Bachmann, Robert Thomas & Rahim, Sahibin Abdul & Salimon, Jumat, 2014. "Biochar from oil palm biomass: A review of its potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 729-739.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:9:p:2495-2504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.