IDEAS home Printed from https://ideas.repec.org/p/ipt/iptwpa/jrc139498.html
   My bibliography  Save this paper

Modelling circular economy impacts in the context of a transition to a fair and sustainable economy. The need to combine bottom-up and top-down MFA, LCA and GE Models

Author

Listed:

Abstract

Existing forward-looking models such as Integrated Assessment Models (IAMs), Energy models, and (Computable) General Equilibrium (GE) models work well for assessing energy and climate problems. But such top-down, usually economy-wide models have limited sector resolution. They cannot assess highly product specific circular economy (CE) strategies such as component re-use, refurbishment, or high quality material recycling. This requires detailed physical systems modelling. Material Flow Analysis (MFA) and Life cycle assessment/costing (LCA/LCC) offer this detail and physical basis. But these mainly physical, partial and static bottom-up models lack the economy-wide socio-economic impact assessment capabilities and endogenized dynamic features of e.g. GE models. We propose here a hybrid approach as solution. GE models with an Input Output (IO) core could be used as a basis, at a state of the art detail of 100-150 sectors/products and over150 countries, preferably backed by a (consortium of) international institutions to provide formal status. Higher detail, physical layers, and sectoral capital stock vintage information may be provided in a research context. Detailed bottom-up MFA and LCA/LCC assessments are then to be hard- or soft-linked to the IO core of the GE model. Even then questions remain as how CE interventions may induce changes in value added capturing in economic networks, stimulate diffusion of new technologies, and limit damages of environmental change on the economy. Additional qualitative and quantitative assessments can help to include such effects exogenously in a GE model. The fallacy of modelling the future based on historical trends can be overcome by using models in a back casting rather than forecasting mode. Models then are used to check under which conditions pathways to normatively desired futures can be realized. This approach allows assessing the social, economic and environmental impacts of CE policies comprehensively, and hence how CE can support the transition to a fair and sustainable economy.

Suggested Citation

  • TUKKER Arnold & RUEDA CANTUCHE Jose Manuel, 2024. "Modelling circular economy impacts in the context of a transition to a fair and sustainable economy. The need to combine bottom-up and top-down MFA, LCA and GE Models," JRC Research Reports JRC139498, Joint Research Centre.
  • Handle: RePEc:ipt:iptwpa:jrc139498
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/handle/JRC139498
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincent Moreau & Marlyne Sahakian & Pascal Griethuysen & François Vuille, 2017. "Coming Full Circle: Why Social and Institutional Dimensions Matter for the Circular Economy," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 497-506, June.
    2. Stefano Merciai & Jannick Schmidt, 2018. "Methodology for the Construction of Global Multi†Regional Hybrid Supply and Use Tables for the EXIOBASE v3 Database," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 516-531, June.
    3. Christian Lutz & Bernd Meyer & Marc Ingo Wolter, 2010. "The global multisector/multicountry 3-E model GINFORS. A description of the model and a baseline forecast for global energy demand and CO 2 emissions," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 25-45.
    4. Richard Wood & Troy R. Hawkins & Edgar G. Hertwich & Arnold Tukker, 2014. "Harmonising National Input-Output Tables For Consumption-Based Accounting - Experiences From Exiopol," Economic Systems Research, Taylor & Francis Journals, vol. 26(4), pages 387-409, December.
    5. Carl†Johan Södersten & Richard Wood & Edgar G. Hertwich, 2018. "Environmental Impacts of Capital Formation," Journal of Industrial Ecology, Yale University, vol. 22(1), pages 55-67, February.
    6. Tukker, Arnold & Goldbohm, R. Alexandra & de Koning, Arjan & Verheijden, Marieke & Kleijn, René & Wolf, Oliver & Pérez-Domínguez, Ignacio & Rueda-Cantuche, Jose M., 2011. "Environmental impacts of changes to healthier diets in Europe," Ecological Economics, Elsevier, vol. 70(10), pages 1776-1788, August.
    7. Sun, Zhongxiao & Behrens, Paul & Tukker, Arnold & Bruckner, Martin & Scherer, Laura, 2022. "Shared and environmentally just responsibility for global biodiversity loss," Ecological Economics, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arru, Brunella & Furesi, Roberto & Pulina, Pietro & Sau, Paola & Madau, Fabio A., 2022. "The Circular Economy in the Agri-food system: A Performance Measurement of European Countries," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 24(2), September.
    2. Jingwen Huo & Peipei Chen & Klaus Hubacek & Heran Zheng & Jing Meng & Dabo Guan, 2022. "Full‐scale, near real‐time multi‐regional input–output table for the global emerging economies (EMERGING)," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1218-1232, August.
    3. Bernhard Steubing & Arjan de Koning & Stefano Merciai & Arnold Tukker, 2022. "How do carbon footprints from LCA and EEIOA databases compare? A comparison of ecoinvent and EXIOBASE," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1406-1422, August.
    4. Glenn A. Aguilar‐Hernandez & Sebastiaan Deetman & Stefano Merciai & João F. D. Rodrigues & Arnold Tukker, 2021. "Global distribution of material inflows to in‐use stocks in 2011 and its implications for a circularity transition," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1447-1461, December.
    5. Brunella Arru & Roberto Furesi & Pietro Pulina & Paola Sau & Fabio A. Madau, 2022. "The Circular Economy in the Agri-food system: A Performance Measurement of European Countries," Economia agro-alimentare, FrancoAngeli Editore, vol. 24(2), pages 1-35.
    6. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    7. Francesco Bandarin & Enrico Ciciotti & Marco Cremaschi & Giovanna Madera & Paolo Perulli & Diana Shendrikova, 2020. "Which Future for Cities after COVID-19 An international Survey," Reports, Fondazione Eni Enrico Mattei, October.
    8. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    9. Akan, Taner & Gündüz, Halil İbrahim & Emirmahmutoğlu, Furkan & Işık, Ali Haydar, 2023. "Disaggregating renewable energy-growth nexus: W-ARDL and W-Toda-Yamamoto approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
    11. Anna Barford & Saffy Rose Ahmad, 2021. "A Call for a Socially Restorative Circular Economy: Waste Pickers in the Recycled Plastics Supply Chain," Circular Economy and Sustainability, Springer, vol. 1(2), pages 761-782, September.
    12. Gavin Melles, 2021. "Figuring the Transition from Circular Economy to Circular Society in Australia," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    13. Appiah, Michael & Li, Mingxing & Sehrish, Saba & Abaji, Emad Eddin, 2023. "Investigating the connections between innovation, natural resource extraction, and environmental pollution in OECD nations; examining the role of capital formation," Resources Policy, Elsevier, vol. 81(C).
    14. Walzberg, Julien & Dandres, Thomas & Merveille, Nicolas & Cheriet, Mohamed & Samson, Réjean, 2020. "Should we fear the rebound effect in smart homes?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    15. Lucas Becerra & Sebastián Carenzo & Paula Juarez, 2020. "When Circular Economy Meets Inclusive Development. Insights from Urban Recycling and Rural Water Access in Argentina," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    16. Jayet, Pierre-Alain & Isbasoiu, Ancuta & De Cara, Stéphane, 2020. "Slaughter cattle to secure food calories and reduce agricultural greenhouse gas emissions? Some prospective estimates for France," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 101(1), July.
    17. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    18. Thomas Beaussier & Sylvain Caurla & Véronique Bellon Maurel & Philippe Delacote & Eléonore Loiseau, 2022. "Deepening the territorial Life Cycle Assessment approach with partial equilibrium modelling : First insights from an application to a wood energy incentive in a French region," Post-Print hal-03604731, HAL.
    19. Gissela Landa Rivera & Paul Malliet & Aurélien Saussay & Frédéric Reynès, 2018. "The State of Applied Environmental Macroeconomics," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 133-149.
    20. Louis-Georges Soler & Alban Thomas, 2020. "Is there a win–win scenario with increased beef quality and reduced consumption?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 101(1), pages 91-116, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:iptwpa:jrc139498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publication Officer (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.