IDEAS home Printed from https://ideas.repec.org/p/ipt/decwpa/201810.html
   My bibliography  Save this paper

Fair and Unbiased Algorithmic Decision Making: Current State and Future Challenges

Author

Abstract

Machine learning algorithms are now frequently used in sensitive contexts that substantially affect the course of human lives, such as credit lending or criminal justice. This is driven by the idea thatobjective machines base their decisions solely on facts and remain unaffected by human cognitive biases, discriminatory tendencies or emotions. Yet, there is overwhelming evidence showing that algorithms can inherit or even perpetuate human biases in their decision making when they are based on data that contains biased human decisions. This has led to a call for fairness-aware machine learning. However, fairness is a complex concept which is also reflected in the attempts to formalize fairness for algorithmic decision making. Statistical formalizations of fairness lead to a long list of criteria that are each flawed (or harmful even) in different contexts. Moreover,inherent tradeoffs in these criteria make it impossible to unify them in one general framework. Thus,fairness constraintsin algorithms have to be specific to the domains to which the algorithms are applied. In the future, research in algorithmic decision making systems should be aware of data and developer biases and add a focus on transparency to facilitate regular fairness audits.

Suggested Citation

  • Songul Tolan, 2018. "Fair and Unbiased Algorithmic Decision Making: Current State and Future Challenges," JRC Working Papers on Digital Economy 2018-10, Joint Research Centre.
  • Handle: RePEc:ipt:decwpa:201810
    as

    Download full text from publisher

    File URL: https://publications.jrc.ec.europa.eu/repository/handle/JRC113750
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    2. Sendhil Mullainathan & Ziad Obermeyer, 2017. "Does Machine Learning Automate Moral Hazard and Error?," American Economic Review, American Economic Association, vol. 107(5), pages 476-480, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sendhil Mullainathan & Ziad Obermeyer, 2023. "Diagnosing Physician Error: A Machine Learning Approach to Low-Value Health Care," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(2), pages 679-727.
    2. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    3. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," IZA Discussion Papers 14020, Institute of Labor Economics (IZA).
    4. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    5. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    6. Aiello, Francesco & Albanese, Giuseppe & Piselli, Paolo, 2019. "Good value for public money? The case of R&D policy," Journal of Policy Modeling, Elsevier, vol. 41(6), pages 1057-1076.
    7. Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
    8. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    9. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    10. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    11. Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2022. "Predicting agri-food quality across space: A Machine Learning model for the acknowledgment of Geographical Indications," Food Policy, Elsevier, vol. 112(C).
    12. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    13. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    15. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    16. Hannes Wallimann & Silvio Sticher, 2023. "On suspicious tracks: machine-learning based approaches to detect cartels in railway-infrastructure procurement," Papers 2304.11888, arXiv.org.
    17. Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
    18. Di Stefano, Roberta & Resce, Giuliano, "undated". "The Determinants of Missed Funding: Predicting the Paradox of Increased Need and Reduced Allocation," Economics & Statistics Discussion Papers esdp23092, University of Molise, Department of Economics.
    19. Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
    20. Giovanni Di Franco & Michele Santurro, 2021. "Machine learning, artificial neural networks and social research," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(3), pages 1007-1025, June.

    More about this item

    Keywords

    fairness; machine learning; algorithmic bias; algorithmic transparency;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:decwpa:201810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publication Officer (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.