Author
Listed:
- Mair, Patrick
- Hatzinger, Reinhold
Abstract
Item response theory models (IRT) are increasingly becoming established in social science research, particularly in the analysis of performance or attitudinal data in psychology, education, medicine, marketing and other fields where testing is relevant. We propose the R package eRm (extended Rasch modeling) for computing Rasch models and several extensions. A main characteristic of some IRT models, the Rasch model being the most prominent, concerns the separation of two kinds of parameters, one that describes qualities of the subject under investigation, and the other relates to qualities of the situation under which the response of a subject is observed. Using conditional maximum likelihood (CML) estimation both types of parameters may be estimated independently from each other. IRT models are well suited to cope with dichotomous and polytomous responses, where the response categories may be unordered as well as ordered. The incorporation of linear structures allows for modeling the effects of covariates and enables the analysis of repeated categorical measurements. The eRm package fits the following models: the Rasch model, the rating scale model (RSM), and the partial credit model (PCM) as well as linear reparameterizations through covariate structures like the linear logistic test model (LLTM), the linear rating scale model (LRSM), and the linear partial credit model (LPCM). We use an unitary, efficient CML approach to estimate the item parameters and their standard errors. Graphical and numeric tools for assessing goodness-of-fit are provided.
Suggested Citation
Mair, Patrick & Hatzinger, Reinhold, 2007.
"Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i09).
Handle:
RePEc:jss:jstsof:v:020:i09
DOI: http://hdl.handle.net/10.18637/jss.v020.i09
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:020:i09. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.