IDEAS home Printed from https://ideas.repec.org/a/spr/elmark/v32y2022i3d10.1007_s12525-022-00524-4.html
   My bibliography  Save this article

Uncovering the digitalization impact on consumer decision-making for checking accounts in banking

Author

Listed:
  • Maik Dehnert

    (University of Potsdam)

  • Josephine Schumann

    (University of Potsdam)

Abstract

Checking account providers must understand the importance of digital and non-digital service attributes across different customer segments to achieve a product-market fit in digitalization. In particular, various latent personal characteristics influence customer choices in digital banking. However, there is only limited research on banking customer behavior beyond the technology acceptance model, and none that explores customer preferences for checking accounts experimentally. Against this background, we present the results of a discrete choice experiment on customer preferences towards checking accounts in Germany. The outcome of the paper is a detailed quantitative assessment of the relationships between checking account service attributes and a set of latent influencing factors on choice. While customer service experience, the scope of services, and professional expertise are identified as re-occurring critical aspects for customers when choosing their banking service provider, the type of provider and digital product innovation showed little impact on customer choice overall. In multigroup analyses, we reveal the moderating impact of influencing factors on the preference of checking account service attributes. Additional segmentation analyses point to six customer segments from which four still prefer a traditional operating model. The largest segment of traditional product-innovative customers prefers digitalized, i.e., data-driven checking accounts in a mixed-mode with human customer advisory and on-site branch services from a traditional bank. At the other end of the spectrum, a small innovative Fintech customer segment, influenced by non-pragmatism and social norms, prefers a purely digital operating model with data-driven applications in banking.

Suggested Citation

  • Maik Dehnert & Josephine Schumann, 2022. "Uncovering the digitalization impact on consumer decision-making for checking accounts in banking," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1503-1528, September.
  • Handle: RePEc:spr:elmark:v:32:y:2022:i:3:d:10.1007_s12525-022-00524-4
    DOI: 10.1007/s12525-022-00524-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12525-022-00524-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12525-022-00524-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457, Elsevier.
    2. Okazaki, Shintaro & Mendez, Felipe, 2013. "Perceived Ubiquity in Mobile Services," Journal of Interactive Marketing, Elsevier, vol. 27(2), pages 98-111.
    3. Jünger, Moritz & Mietzner, Mark, 2020. "Banking goes digital: The adoption of FinTech services by German households," Finance Research Letters, Elsevier, vol. 34(C).
    4. De Bruyn, Arnaud & Lilien, Gary L., 2008. "A multi-stage model of word-of-mouth influence through viral marketing," International Journal of Research in Marketing, Elsevier, vol. 25(3), pages 151-163.
    5. Maik Dehnert, 2020. "Sustaining the current or pursuing the new: incumbent digital transformation strategies in the financial service industry," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 1071-1113, November.
    6. Santiago Carbo-Valverde & Pedro Cuadros-Solas & Francisco Rodríguez-Fernández, 2020. "A machine learning approach to the digitalization of bank customers: Evidence from random and causal forests," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-39, October.
    7. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    8. Kim, Yeolib & Peterson, Robert A., 2017. "A Meta-analysis of Online Trust Relationships in E-commerce," Journal of Interactive Marketing, Elsevier, vol. 38(C), pages 44-54.
    9. Dick, Astrid A., 2008. "Demand estimation and consumer welfare in the banking industry," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1661-1676, August.
    10. Peter Gomber & Jascha-Alexander Koch & Michael Siering, 2017. "Digital Finance and FinTech: current research and future research directions," Journal of Business Economics, Springer, vol. 87(5), pages 537-580, July.
    11. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    12. Punj, Girish N & Stewart, David W, 1983. "An Interaction Framework of Consumer Decision Making," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(2), pages 181-196, September.
    13. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, October.
    14. Necmi K. Avkiran & Christian M. Ringle (ed.), 2018. "Partial Least Squares Structural Equation Modeling," International Series in Operations Research and Management Science, Springer, number 978-3-319-71691-6, April.
    15. Matsuo, Makoto & Minami, Chieko & Matsuyama, Takuya, 2018. "Social influence on innovation resistance in internet banking services," Journal of Retailing and Consumer Services, Elsevier, vol. 45(C), pages 42-51.
    16. Mi Zhou & Dan Geng & Vibhanshu Abhishek & Beibei Li, 2020. "When the Bank Comes to You: Branch Network and Customer Omnichannel Banking Behavior," Information Systems Research, INFORMS, vol. 31(1), pages 176-197, March.
    17. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    18. Sara Dolnicar & Friedrich Leisch, 2010. "Evaluation of structure and reproducibility of cluster solutions using the bootstrap," Marketing Letters, Springer, vol. 21(1), pages 83-101, March.
    19. Key Pousttchi & Maik Dehnert, 2018. "Exploring the digitalization impact on consumer decision-making in retail banking," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(3), pages 265-286, August.
    20. Joseph F. Hair & Christian M. Ringle & Siegfried P. Gudergan & Andreas Fischer & Christian Nitzl & Con Menictas, 2019. "Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice," Business Research, Springer;German Academic Association for Business Research, vol. 12(1), pages 115-142, April.
    21. Christian Homburg & Danijel Jozić & Christina Kuehnl, 2017. "Customer experience management: toward implementing an evolving marketing concept," Journal of the Academy of Marketing Science, Springer, vol. 45(3), pages 377-401, May.
    22. Rainer Alt & Jan Fabian Ehmke & Reinhold Haux & Tino Henke & Dirk Christian Mattfeld & Andreas Oberweis & Barbara Paech & Alfred Winter, 2019. "Towards customer-induced service orchestration - requirements for the next step of customer orientation," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(1), pages 79-91, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santiago Carbó‐Valverde & Pedro J. Cuadros‐Solas & Francisco Rodríguez‐Fernández & José Juan Sánchez‐Béjar, 2024. "Digital innovation and de‐branching in the banking industry: Customer perception and satisfaction," Global Policy, London School of Economics and Political Science, vol. 15(S1), pages 8-20, March.
    2. Rainer Alt, 2022. "Electronic Markets on platform culture," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1019-1031, September.
    3. Swaraj S. Bharti & Kanika Prasad & Shwati Sudha & Vineeta Kumari, 2023. "Customer acceptability towards AI-enabled digital banking: a PLS-SEM approach," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 28(4), pages 779-793, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
    2. Rischatsch, Maurus, 2015. "Who joins the network? Physicians’ resistance to take budgetary co-responsibility," Journal of Health Economics, Elsevier, vol. 40(C), pages 109-121.
    3. Seiler, Volker & Fanenbruck, Katharina Maria, 2021. "Acceptance of digital investment solutions: The case of robo advisory in Germany," Research in International Business and Finance, Elsevier, vol. 58(C).
    4. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    5. Abdurrahman B. Aydemir & Erkan Duman, 2021. "Migrant Networks and Destination Choice: Evidence from Moves across Turkish Provinces," Koç University-TUSIAD Economic Research Forum Working Papers 2109, Koc University-TUSIAD Economic Research Forum.
    6. Di Ciommo, Floridea & Comendador, Julio & López-Lambas, María Eugenia & Cherchi, Elisabetta & Ortúzar, Juan de Dios, 2014. "Exploring the role of social capital influence variables on travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 46-55.
    7. Mattia Girotti & Richard Meade, 2017. "U.S. Savings Banks' Demutualization and Depositor Welfare," Working Papers 2017-08, Auckland University of Technology, Department of Economics.
    8. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    9. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    10. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    11. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    12. Kanchanaroek, Yingluk & Termansen, Mette & Quinn, Claire, 2013. "Property rights regimes in complex fishery management systems: A choice experiment application," Ecological Economics, Elsevier, vol. 93(C), pages 363-373.
    13. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    14. Marc A. Scott & Kaushik Mohan & Jacques‐Antoine Gauthier, 2020. "Model‐based clustering and analysis of life history data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1231-1251, June.
    15. Johanna Lena Dahlhausen & Cam Rungie & Jutta Roosen, 2018. "Value of labeling credence attributes—common structures and individual preferences," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 741-751, November.
    16. Michel Beine & Marco Delogu & Lionel Ragot, 2017. "The Role of Fees in Foreign Education: Evidence From Italy and the United Kingdom," Working Papers 2017-04, CEPII research center.
    17. Schaefer, Thilo & Peichl, Andreas, 2006. "Documentation FiFoSiM: integrated tax benefit microsimulation and CGE model," FiFo Discussion Papers - Finanzwissenschaftliche Diskussionsbeiträge 06-10, University of Cologne, FiFo Institute for Public Economics.
    18. Theo A. Arentze & Benedict G. C. Dellaert & Caspar G. Chorus, 2015. "Incorporating Mental Representations in Discrete Choice Models of Travel Behavior: Modeling Approach and Empirical Application," Transportation Science, INFORMS, vol. 49(3), pages 577-590, August.
    19. Liu, Gang, 2007. "A behavioral model of work-trip mode choice in Shanghai," China Economic Review, Elsevier, vol. 18(4), pages 456-476.
    20. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.

    More about this item

    Keywords

    Digitalization; Banking; Checking account; Consumer behavior; Digital transformation; Fintech;
    All these keywords.

    JEL classification:

    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:32:y:2022:i:3:d:10.1007_s12525-022-00524-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.