IDEAS home Printed from https://ideas.repec.org/p/iik/wpaper/459.html
   My bibliography  Save this paper

BBECT: Bandit -based Ethical Clinical Trials

Author

Listed:
  • Mohammed Shahid Abdulla

    (Indian Institute of Management Kozhikode)

  • L Ramprasath

    (Indian Institute of Management Kozhikode)

Abstract

An aim of Ethico-Optimal clinical trials of drugs in Phase III is to randomly allocate a new drug (ND) to patients in the sample, but with a greater fraction being administered ND if doing so is statistically justified. Such an adaptation is not possible in static trials designed with a sample size N in which approximately half the patients would receive the current drug or standard of care (SOC), despite evidence within the trial that ND is efficacious. We adapt a canonical stochastic multi-armed bandit algorithm named UCB1 to a clinical trials setting and analyse the resulting Type-2 error ß, as also minimum sample size N required by such a trial for a certain ß level. The difference in our proposal is not just in the allocation rule that applies to patients or volunteers in the trial, but also in the inference rule to decide if null hypothesis can be rejected. We also present simulations to establish that the ethical properties of such a trial are higher, both to verify our analysis and demonstate an empirical advantage when compared to 2 existing methods. In these simulations, we also propose and demonstrate a device to achieve low or comparable Type-1 error a vis-a-vis existing methods.

Suggested Citation

  • Mohammed Shahid Abdulla & L Ramprasath, 2021. "BBECT: Bandit -based Ethical Clinical Trials," Working papers 459, Indian Institute of Management Kozhikode.
  • Handle: RePEc:iik:wpaper:459
    as

    Download full text from publisher

    File URL: https://iimk.ac.in/websiteadmin/FacultyPublications/Working%20Papers/3420IIMK_WPS_459_ITS_2021_05_Upload.pdf?t=16
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilles Stoltz & Sébastien Bubeck & Rémi Munos, 2011. "Pure exploration in finitely-armed and continuous-armed bandits," Post-Print hal-00609550, HAL.
    2. William F. Rosenberger & Nigel Stallard & Anastasia Ivanova & Cherice N. Harper & Michelle L. Ricks, 2001. "Optimal Adaptive Designs for Binary Response Trials," Biometrics, The International Biometric Society, vol. 57(3), pages 909-913, September.
    3. Biswas, Atanu & Bhattacharya, Rahul, 2011. "Optimal response-adaptive allocation designs in phase III clinical trials: Incorporating ethics in optimality," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1155-1160, August.
    4. Adam L. Smith & Sofía S. Villar, 2018. "Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(6), pages 1052-1076, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uttam Bandyopadhyay & Atanu Biswas & Shirsendu Mukherjee, 2009. "Adaptive two-treatment two-period crossover design for binary treatment responses incorporating carry-over effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 13-33, March.
    2. Biswas, Atanu & Bhattacharya, Rahul, 2010. "An optimal response-adaptive design with dual constraints," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 177-185, February.
    3. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    4. Mandal, Saumen & Biswas, Atanu & Trandafir, Paula Camelia & Islam Chowdhury, Mohammad Ziaul, 2013. "Optimal target allocation proportion for correlated binary responses in a 2×2 setup," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 1991-1997.
    5. Uttam Bandyopadhyay & Atanu Biswas, 2018. "Fixed-width confidence interval for covariate-adjusted response-adaptive designs," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 353-371, April.
    6. Sofía S. Villar & William F. Rosenberger, 2018. "Covariate†adjusted response†adaptive randomization for multi†arm clinical trials using a modified forward looking Gittins index rule," Biometrics, The International Biometric Society, vol. 74(1), pages 49-57, March.
    7. Chambaz Antoine & van der Laan Mark J., 2011. "Targeting the Optimal Design in Randomized Clinical Trials with Binary Outcomes and No Covariate: Simulation Study," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-30, January.
    8. Stephen E. Chick & Noah Gans & Özge Yapar, 2022. "Bayesian Sequential Learning for Clinical Trials of Multiple Correlated Medical Interventions," Management Science, INFORMS, vol. 68(7), pages 4919-4938, July.
    9. Masahiro Kato & Kaito Ariu, 2021. "The Role of Contextual Information in Best Arm Identification," Papers 2106.14077, arXiv.org, revised Feb 2024.
    10. Anupam Kundu & Nabaneet Das & Sayantan Chakraborty & Subir Kumar Bhandari, 2017. "Optimal Test Statistics for Minimising not Cured Proportion in Adaptive Clinical Trial," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 156-169, May.
    11. Yi, Yanqing, 2013. "Exact statistical power for response adaptive designs," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 201-209.
    12. Uttam Bandyopadhyay & Rahul Bhattacharya, 2009. "Response adaptive procedures with dual optimality," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 353-367, August.
    13. Uttam Bandyopadhyay & Atanu Biswas & Rahul Bhattacharya, 2009. "Drop-the-loser design in the presence of covariates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 69(1), pages 1-15, January.
    14. Alessandro Lizzeri & Eran Shmaya & Leeat Yariv, 2024. "Disentangling Exploration from Exploitation," Papers 2404.19116, arXiv.org.
    15. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A new inferential approach for response-adaptive clinical trials: the variance-stabilized bootstrap," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 235-254, March.
    16. Marie Billaud Friess & Arthur Macherey & Anthony Nouy & Clémentine Prieur, 2022. "A PAC algorithm in relative precision for bandit problem with costly sampling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 161-185, October.
    17. Hengtao Zhang & Guosheng Yin, 2021. "Response‐adaptive rerandomization," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1281-1298, November.
    18. Alessandro Baldi Antognini & Marco Novelli & Maroussa Zagoraiou, 2022. "A simple solution to the inadequacy of asymptotic likelihood-based inference for response-adaptive clinical trials," Statistical Papers, Springer, vol. 63(1), pages 157-180, February.
    19. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org, revised Jul 2024.
    20. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iik:wpaper:459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sudheesh Kumar (email available below). General contact details of provider: https://edirc.repec.org/data/iikmmin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.