IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v96y2022i2d10.1007_s00186-022-00769-x.html
   My bibliography  Save this article

A PAC algorithm in relative precision for bandit problem with costly sampling

Author

Listed:
  • Marie Billaud Friess

    (Nantes Université Centrale Nantes, LMJL, UMR CNRS 6629)

  • Arthur Macherey

    (Nantes Université Centrale Nantes, LMJL, UMR CNRS 6629
    Université Grenoble Alpes)

  • Anthony Nouy

    (Nantes Université Centrale Nantes, LMJL, UMR CNRS 6629)

  • Clémentine Prieur

    (Université Grenoble Alpes)

Abstract

This paper considers the problem of maximizing an expectation function over a finite set, or finite-arm bandit problem. We first propose a naive stochastic bandit algorithm for obtaining a probably approximately correct (PAC) solution to this discrete optimization problem in relative precision, that is a solution which solves the optimization problem up to a relative error smaller than a prescribed tolerance, with high probability. We also propose an adaptive stochastic bandit algorithm which provides a PAC-solution with the same guarantees. The adaptive algorithm outperforms the mean complexity of the naive algorithm in terms of number of generated samples and is particularly well suited for applications with high sampling cost.

Suggested Citation

  • Marie Billaud Friess & Arthur Macherey & Anthony Nouy & Clémentine Prieur, 2022. "A PAC algorithm in relative precision for bandit problem with costly sampling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 161-185, October.
  • Handle: RePEc:spr:mathme:v:96:y:2022:i:2:d:10.1007_s00186-022-00769-x
    DOI: 10.1007/s00186-022-00769-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-022-00769-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-022-00769-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilles Stoltz & Sébastien Bubeck & Rémi Munos, 2011. "Pure exploration in finitely-armed and continuous-armed bandits," Post-Print hal-00609550, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org, revised Jul 2024.
    2. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
    3. Saeid Delshad & Amin Khademi, 2020. "Information theory for ranking and selection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 239-253, June.
    4. Lizzeri, Alessandro & Shmaya, Eran & Yariv, Leeat, 2024. "Disentangling Exploration from Exploitation," CEPR Discussion Papers 19058, C.E.P.R. Discussion Papers.
    5. Hyeong Soo Chang, 2020. "An asymptotically optimal strategy for constrained multi-armed bandit problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 545-557, June.
    6. Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
    7. Ruimeng Hu, 2019. "Deep Learning for Ranking Response Surfaces with Applications to Optimal Stopping Problems," Papers 1901.03478, arXiv.org, revised Mar 2020.
    8. Masahiro Kato & Kaito Ariu, 2021. "The Role of Contextual Information in Best Arm Identification," Papers 2106.14077, arXiv.org, revised Feb 2024.
    9. Mohammed Shahid Abdulla & L Ramprasath, 2021. "BBECT: Bandit -based Ethical Clinical Trials," Working papers 459, Indian Institute of Management Kozhikode.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:96:y:2022:i:2:d:10.1007_s00186-022-00769-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.