IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v21y2016i1d10.1007_s13253-015-0236-z.html
   My bibliography  Save this article

Extended Burr XII Regression Models: Theory and Applications

Author

Listed:
  • Beatriz R. Lanjoni

    (Universidade de São Paulo)

  • Edwin M. M. Ortega

    (Universidade de São Paulo)

  • Gauss M. Cordeiro

    (Universidade Federal de Pernambuco, Cidade Universitária)

Abstract

We introduce two new lifetime distributions by compounding the Burr XII (BXII) and geometric distributions. We derive their moments and moment-generating and quantile functions. We also define two new extended regression models based on the logarithms of these distributions. The regression models are very useful in the analysis of real data since they can provide better fits than other special regression models. We formulate a new cure rate survival model, where the number of competing causes of the event of interest follows a geometric distribution and the time to this event has the BXII geometric distribution. The estimation of the model parameters is performed by maximum likelihood. We illustrate the importance of the new models by means of two real datasets. The first dataset comes from a study carried out at the Department of Entomology of the Luiz de Queiroz School of Agriculture, University of São Paulo, which aims to assess the longevity of the Mediterranean fruit fly (ceratitis capitata). The second dataset comes from the area of biology.

Suggested Citation

  • Beatriz R. Lanjoni & Edwin M. M. Ortega & Gauss M. Cordeiro, 2016. "Extended Burr XII Regression Models: Theory and Applications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 203-224, March.
  • Handle: RePEc:spr:jagbes:v:21:y:2016:i:1:d:10.1007_s13253-015-0236-z
    DOI: 10.1007/s13253-015-0236-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-015-0236-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-015-0236-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    2. Felipe Gusmão & Edwin Ortega & Gauss Cordeiro, 2011. "The generalized inverse Weibull distribution," Statistical Papers, Springer, vol. 52(3), pages 591-619, August.
    3. Giovana O. Silva & Edwin M.M. Ortega & Gilberto A. Paula, 2011. "Residuals for log-Burr XII regression models in survival analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1435-1445, June.
    4. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    5. Tsodikov A.D. & Ibrahim J.G. & Yakovlev A.Y., 2003. "Estimating Cure Rates From Survival Data: An Alternative to Two-Component Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1063-1078, January.
    6. Cooner, Freda & Banerjee, Sudipto & Carlin, Bradley P. & Sinha, Debajyoti, 2007. "Flexible Cure Rate Modeling Under Latent Activation Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 560-572, June.
    7. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    8. Silva, Giovana Oliveira & Ortega, Edwin M.M. & Cancho, Vicente G. & Barreto, Mauricio Lima, 2008. "Log-Burr XII regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3820-3842, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiago G. Ramires & Niel Hens & Gauss M. Cordeiro & Edwin M. M. Ortega, 2018. "Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model," Computational Statistics, Springer, vol. 33(2), pages 709-730, June.
    2. Muhammad Zubair & Muhammad H. Tahir & Gauss M. Cordeiro & Ayman Alzaatreh & Edwin M. M. Ortega, 2018. "The power-Cauchy negative-binomial: properties and regression," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    2. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    3. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    4. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    5. Shovan Chowdhury, 2014. "Compounded Generalized Weibull Distributions - A Unified Approach," Working papers 148, Indian Institute of Management Kozhikode.
    6. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    7. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    8. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    9. Francesca Condino & Filippo Domma, 2017. "A new distribution function with bounded support: the reflected generalized Topp-Leone power series distribution," METRON, Springer;Sapienza Università di Roma, vol. 75(1), pages 51-68, April.
    10. Shovan Chowdhury & Asok K Nanda, 2015. "A special class of distorted premium principle based on an extension of the exponential-geometric distribution," Working papers 188, Indian Institute of Management Kozhikode.
    11. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    12. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    13. Jimut Bahan Chakrabarty & Shovan Chowdhury, 2016. "Compounded Inverse Weibull Distributions: Properties, Inference and Applications," Working papers 213, Indian Institute of Management Kozhikode.
    14. Mohamed Elamin Abdallah Mohamed Elamin Omer & Mohd Rizam Abu Bakar & Mohd Bakri Adam & Mohd Shafie Mustafa, 2020. "Cure Models with Exponentiated Weibull Exponential Distribution for the Analysis of Melanoma Patients," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    15. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    16. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
    17. Thiago G. Ramires & Niel Hens & Gauss M. Cordeiro & Edwin M. M. Ortega, 2018. "Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model," Computational Statistics, Springer, vol. 33(2), pages 709-730, June.
    18. Ibrahim Elbatal & Emrah Altun & Ahmed Z. Afify & Gamze Ozel, 2019. "The Generalized Burr XII Power Series Distributions with Properties and Applications," Annals of Data Science, Springer, vol. 6(3), pages 571-597, September.
    19. Barreto-Souza, Wagner, 2012. "Bivariate gamma-geometric law and its induced Lévy process," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 130-145.
    20. Sanku Dey & Vikas Kumar Sharma & Mhamed Mesfioui, 2017. "A New Extension of Weibull Distribution with Application to Lifetime Data," Annals of Data Science, Springer, vol. 4(1), pages 31-61, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:21:y:2016:i:1:d:10.1007_s13253-015-0236-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.