IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/34-15.html
   My bibliography  Save this paper

Identification and estimation of nonparametric panel data regressions with measurement error

Author

Listed:
  • Daniel Wilhelm

    (Institute for Fiscal Studies and University College London)

Abstract

This paper provides a constructive argument for identification of nonparametric panel data models with measurement error in a continuous explanatory variable. The approach point identifies all structural elements of the model using only observations of the outcome and the mismeasured explanatory variable; no further external variables such as instruments are required. In the case of two time periods, restricting either the structural or the measurement error to be independent over time allows past explanatory variables or outcomes to serve as instruments. Time periods have to be linked through serial dependence in the latent explanatory variable, but the transition process is left nonparametric. The paper discusses the general identification result in the context of a nonlinear panel data regression model with additively separable fixed effects. It provides a nonparametric plug-in estimator, derives its uniform rate of convergence, and presents simulation evidence for good performance in finite samples.

Suggested Citation

  • Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers CWP34/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:34/15
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp341515.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heitor Almeida & Murillo Campello & Antonio F. Galvao, 2010. "Measurement Errors in Investment Equations," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3279-3328.
    2. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(3), pages 497-521, June.
    3. Timothy Erickson & Toni M. Whited, 2000. "Measurement Error and the Relationship between Investment and q," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 1027-1057, October.
    4. Wansbeek, Tom, 2001. "GMM estimation in panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 104(2), pages 259-268, September.
    5. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    6. S. M. Schennach & Yingyao Hu, 2013. "Nonparametric Identification and Semiparametric Estimation of Classical Measurement Error Models Without Side Information," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 177-186, March.
    7. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    8. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    9. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    10. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    11. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, September.
    12. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    13. Fève, Frédérique & Florens, Jean-Pierre, 2014. "Non parametric analysis of panel data models with endogenous variables," Journal of Econometrics, Elsevier, vol. 181(2), pages 151-164.
    14. Marianne Bertrand & Antoinette Schoar, 2003. "Managing with Style: The Effect of Managers on Firm Policies," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(4), pages 1169-1208.
    15. Hu, Yingyao & Shiu, Ji-Liang, 2018. "Nonparametric Identification Using Instrumental Variables: Sufficient Conditions For Completeness," Econometric Theory, Cambridge University Press, vol. 34(3), pages 659-693, June.
    16. J.J. Heckman & E.E. Leamer (ed.), 2001. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 5, number 5.
    17. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    18. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    19. Khan, Shakeeb & Ponomareva, Maria & Tamer, Elie, 2016. "Identification of panel data models with endogenous censoring," Journal of Econometrics, Elsevier, vol. 194(1), pages 57-75.
    20. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    21. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    22. Flavio Cunha & James J. Heckman & Susanne M. Schennach, 2010. "Estimating the Technology of Cognitive and Noncognitive Skill Formation," Econometrica, Econometric Society, vol. 78(3), pages 883-931, May.
    23. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2013. "On the Testability of Identification in Some Nonparametric Models With Endogeneity," Econometrica, Econometric Society, vol. 81(6), pages 2535-2559, November.
    24. Schennach, Susanne M., 2004. "Nonparametric Regression In The Presence Of Measurement Error," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1046-1093, December.
    25. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric Instrumental Variable Estimation Under Monotonicity," Econometrica, Econometric Society, vol. 85, pages 1303-1320, July.
    26. Richard Blundell & Xiaohong Chen & Dennis Kristensen, 2007. "Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves," Econometrica, Econometric Society, vol. 75(6), pages 1613-1669, November.
    27. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    28. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers CWP41/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    29. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    30. Qian, Junhui & Wang, Le, 2012. "Estimating semiparametric panel data models by marginal integration," Journal of Econometrics, Elsevier, vol. 167(2), pages 483-493.
    31. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2011. "Convergence Rates For Ill-Posed Inverse Problems With An Unknown Operator," Econometric Theory, Cambridge University Press, vol. 27(3), pages 522-545, June.
    32. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    33. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    34. Joel L. Horowitz & Sokbae Lee, 2007. "Nonparametric Instrumental Variables Estimation of a Quantile Regression Model," Econometrica, Econometric Society, vol. 75(4), pages 1191-1208, July.
    35. Carrasco, Marine & Florens, Jean-Pierre, 2011. "A Spectral Method For Deconvolving A Density," Econometric Theory, Cambridge University Press, vol. 27(3), pages 546-581, June.
    36. Galvao Jr, A. F. & Montes-Rojas, G., 2009. "Instrumental variables quantile regression for panel data with measurement errors," Working Papers 09/06, Department of Economics, City University London.
    37. Lee, Yoonseok, 2014. "Nonparametric Estimation Of Dynamic Panel Models With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 30(6), pages 1315-1347, December.
    38. Barnett, Steven A. & Sakellaris, Plutarchos, 1998. "Nonlinear response of firm investment to Q:: Testing a model of convex and non-convex adjustment costs1," Journal of Monetary Economics, Elsevier, vol. 42(2), pages 261-288, July.
    39. Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
    40. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    41. Card, David, 1996. "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis," Econometrica, Econometric Society, vol. 64(4), pages 957-979, July.
    42. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    43. Aasness, Jorgen & Biorn, Erik & Skjerpen, Terje, 1993. "Engel Functions, Panel Data, and Latent Variables," Econometrica, Econometric Society, vol. 61(6), pages 1395-1422, November.
    44. Schennach, Susanne M., 2008. "Quantile Regression With Mismeasured Covariates," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1010-1043, August.
    45. Susanne M Schennach, 2007. "Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models," Econometrica, Econometric Society, vol. 75(1), pages 201-239, January.
    46. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    47. Johannes, Jan & Van Bellegem, Sebastien & Vanhems, Anne, 2011. "Convergence rates for ill-posed inverse problems with an unknown operator," LIDAM Reprints ISBA 2011047, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    48. Manuel Arellano, 2014. "Uncertainty, Persistence, And Heterogeneity: A Panel Data Perspective," Journal of the European Economic Association, European Economic Association, vol. 12(5), pages 1127-1153, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers CWP41/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Davide Melcangi & Silvia Sarpietro, 2024. "Nonlinear Firm Dynamics," Staff Reports 1088, Federal Reserve Bank of New York.
    3. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    4. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    5. Manuel Arellano & Stéphane Bonhomme, 2017. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 471-496, September.
    6. Young Jun Lee & Daniel Wilhelm, 2020. "Testing for the presence of measurement error in Stata," Stata Journal, StataCorp LP, vol. 20(2), pages 382-404, June.
    7. Manuel Arellano & Richard Blundell & Stéphane Bonhomme, 2017. "Earnings and Consumption Dynamics: A Nonlinear Panel Data Framework," Econometrica, Econometric Society, vol. 85, pages 693-734, May.
    8. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Schennach, Susanne M., 2019. "Convolution without independence," Journal of Econometrics, Elsevier, vol. 211(1), pages 308-318.
    10. Botosaru, Irene, 2023. "Time-varying unobserved heterogeneity in earnings shocks," Journal of Econometrics, Elsevier, vol. 235(2), pages 1378-1393.
    11. Oliver Linton & Ji-Liang Shiu, 2018. "Semiparametric nonlinear panel data models with measurement error," CeMMAP working papers CWP09/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Andrews, Donald W.K., 2017. "Examples of L2-complete and boundedly-complete distributions," Journal of Econometrics, Elsevier, vol. 199(2), pages 213-220.
    13. Gagliardini, Patrick & Gouriéroux, Christian, 2019. "Identification by Laplace transforms in nonlinear time series and panel models with unobserved stochastic dynamic effects," Journal of Econometrics, Elsevier, vol. 208(2), pages 613-637.
    14. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    15. Yingyao Hu, 2015. "Microeconomic models with latent variables: applications of measurement error models in empirical industrial organization and labor economics," CeMMAP working papers CWP03/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers 34/15, Institute for Fiscal Studies.
    2. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    3. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    4. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    6. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Karun Adusumilli & Taisuke Otsu, 2015. "Nonparametric instrumental regression with errors in variables," STICERD - Econometrics Paper Series /2015/585, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
    9. Davezies, Laurent & Le Barbanchon, Thomas, 2017. "Regression discontinuity design with continuous measurement error in the running variable," Journal of Econometrics, Elsevier, vol. 200(2), pages 260-281.
    10. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    11. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers 37/13, Institute for Fiscal Studies.
    12. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    13. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    14. Schennach, Susanne M., 2019. "Convolution without independence," Journal of Econometrics, Elsevier, vol. 211(1), pages 308-318.
    15. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    16. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    17. Firpo, Sergio & Galvao, Antonio F. & Song, Suyong, 2017. "Measurement errors in quantile regression models," Journal of Econometrics, Elsevier, vol. 198(1), pages 146-164.
    18. Zheng Fang & Juwon Seo, 2019. "A Projection Framework for Testing Shape Restrictions That Form Convex Cones," Papers 1910.07689, arXiv.org, revised Sep 2021.
    19. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.
    20. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:34/15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.