IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/21-02.html
   My bibliography  Save this paper

Semiparametric estimation of a panel data proportional hazards model with fixed effects

Author

Listed:
  • Joel L. Horowitz

    (Institute for Fiscal Studies and Northwestern University)

  • Sokbae (Simon) Lee

    (Institute for Fiscal Studies and Columbia University)

Abstract

This paper considers a panel duration model that has a proportional hazards specification with fixed effects. The paper shows how to estimate the baseline and integrated baseline hazard functions without assuming that they belong to known, finitedimensional families of functions. Existing estimators assume that the baseline hazard function belongs to a known parametric family. Therefore, the estimators presented here are more general than existing ones. This paper also presents a method for estimating the parametric part of the proportional hazards model with dependent right censoring, under which the partial likelihood estimator is inconsistent. The paper presents some Monte Carlo evidence on the small sample performance of the new estimators.

Suggested Citation

  • Joel L. Horowitz & Sokbae (Simon) Lee, 2002. "Semiparametric estimation of a panel data proportional hazards model with fixed effects," CeMMAP working papers CWP21/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:21/02
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp0221.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jinyong Hahn, 1994. "The Efficiency Bound of the Mixed Proportional Hazard Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 607-629.
    2. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    3. Efromovich S., 2001. "Density Estimation Under Random Censorship and Order Restrictions: From Asymptotic to Small Samples," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 667-684, June.
    4. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    5. Bo E. Honoré, 1993. "Identification Results for Duration Models with Multiple Spells," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(1), pages 241-246.
    6. Bowlus, Audra J & Kiefer, Nicholas M & Neumann, George R, 2001. "Equilibrium Search Models and the Transition from School to Work," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(2), pages 317-343, May.
    7. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    8. Farber, Henry S, 1994. "The Analysis of Interfirm Worker Mobility," Journal of Labor Economics, University of Chicago Press, vol. 12(4), pages 554-593, October.
    9. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    10. Ridder, Geert & Tunali, Insan, 1999. "Stratified partial likelihood estimation," Journal of Econometrics, Elsevier, vol. 92(2), pages 193-232, October.
    11. Robert H. Topel & Michael P. Ward, 1992. "Job Mobility and the Careers of Young Men," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 439-479.
    12. Jaap H. Abbring & Pierre-André Chiappori & Jean Pinquet, 2003. "Moral Hazard and Dynamic Insurance Data," Journal of the European Economic Association, MIT Press, vol. 1(4), pages 767-820, June.
    13. Horowitz, Joel L, 2001. "Nonparametric Estimation of a Generalized Additive Model with an Unknown Link Function," Econometrica, Econometric Society, vol. 69(2), pages 499-513, March.
    14. Jaap H. Abbring & Pierre-André Chiappori & Jean Pinquet, 2003. "Moral Hazard and Dynamic Insurance Data," Journal of the European Economic Association, MIT Press, vol. 1(4), pages 767-820, June.
    15. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    16. Lancaster, Tony, 2000. "The incidental parameter problem since 1948," Journal of Econometrics, Elsevier, vol. 95(2), pages 391-413, April.
    17. Joel L. Horowitz, 1999. "Semiparametric Estimation of a Proportional Hazard Model with Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 67(5), pages 1001-1028, September.
    18. Jovanovic, Boyan, 1979. "Job Matching and the Theory of Turnover," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 972-990, October.
    19. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    20. Horowitz, Joel & Hardle, Wolfgang, 1994. "Direct Semiparametric Estimation of Single-Index Models With Discrete Covariates," Working Papers 94-22, University of Iowa, Department of Economics.
    21. Tiemen Woutersen, 2000. "Estimators for Panel Duration Data with Endogenous Censoring and Endogenous Regressors," Econometric Society World Congress 2000 Contributed Papers 1581, Econometric Society.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Sokbae, 2008. "Estimating Panel Data Duration Models With Censored Data," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1254-1276, October.
    2. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    3. Khan, Shakeeb & Tamer, Elie, 2007. "Partial rank estimation of duration models with general forms of censoring," Journal of Econometrics, Elsevier, vol. 136(1), pages 251-280, January.
    4. Horowitz, Joel L., 2004. "Semiparametric models," Papers 2004,17, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    5. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    6. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    7. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    8. Bonev, Petyo, 2020. "Nonparametric identification in nonseparable duration models with unobserved heterogeneity," Economics Working Paper Series 2005, University of St. Gallen, School of Economics and Political Science.
    9. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    10. Shakeeb Khan & Elie Tamer, 2002. "Pairwise Comparison Estimation of Censored Transformation Models," RCER Working Papers 495, University of Rochester - Center for Economic Research (RCER).
    11. Ruixuan Liu, 2020. "A competing risks model with time‐varying heterogeneity and simultaneous failure," Quantitative Economics, Econometric Society, vol. 11(2), pages 535-577, May.
    12. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    13. Chan Shen, 2019. "Recursive Differencing for Estimating Semiparametric Models," Departmental Working Papers 201903, Rutgers University, Department of Economics.
    14. Vanhems, Anne & Van Keilegom, Ingrid, 2013. "Semiparametric transformation model with endogeneity: a control function approach," LIDAM Discussion Papers ISBA 2013018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Wolter, James Lewis, 2016. "Kernel estimation of hazard functions when observations have dependent and common covariates," Journal of Econometrics, Elsevier, vol. 193(1), pages 1-16.
    16. Sokbae Lee, 2006. "Identification of a competing risks model with unknown transformations of latent failure times," Biometrika, Biometrika Trust, vol. 93(4), pages 996-1002, December.
    17. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    18. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    19. Vanhems, Anne & Van Keilegom, Ingrid, 2011. "Semiparametric transformation model with endogeneity: a control function approach," LIDAM Discussion Papers ISBA 2011011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Vanhems, Anne & Van Keilegom, Ingrid, 2019. "Estimation Of A Semiparametric Transformation Model In The Presence Of Endogeneity," Econometric Theory, Cambridge University Press, vol. 35(1), pages 73-110, February.
    21. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:21/02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.