IDEAS home Printed from https://ideas.repec.org/p/iek/wpaper/1305.html
   My bibliography  Save this paper

Trend Inflation and the Nature of Structural Breaks in the New Keynesian Phillips Curve

Author

Listed:
  • Chang-Jin Kim

    (Department of Economics, University ofWashington, and Department of Economics, Korea University)

  • Pym Manopimoke

    (Department of Economics, University of Kansas)

  • Charles R. Nelson

    (Department of Economics, University of Washington)

Abstract

In this paper, we investigate the nature of structural breaks in inflation by estimating a version of the New Keynesian Phillips curve (NKPC) in the presence of a unit root in inflation. We show that, with a unit root in inflation, the NKPC implies an unobserved components model that consists of three components: a stochastic trend component, a component that depends upon current and future forecasts of real economic activity, and a stationary component which is potentially serially correlated (or a component of inflation that is not explained by the conventional forward-looking NKPC). Our empirical results suggest that, with an increase in trend inflation during the Great Inflation period, the response of inflation to real economic activity decreases and the persistence of the inflation gap increases due to an increase in the persistence of the unobserved stationary component. These results are in line with the predictions of Cogley and Sbordone (2008), who show that the coefficients of the NKPC are functions of time-varying trend inflation.

Suggested Citation

  • Chang-Jin Kim & Pym Manopimoke & Charles R. Nelson, 2013. "Trend Inflation and the Nature of Structural Breaks in the New Keynesian Phillips Curve," Discussion Paper Series 1305, Institute of Economic Research, Korea University.
  • Handle: RePEc:iek:wpaper:1305
    as

    Download full text from publisher

    File URL: http://econ.korea.ac.kr/~ri/WorkingPapers/w1305.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    2. Peter N. Ireland, 2007. "Changes in the Federal Reserve's Inflation Target: Causes and Consequences," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(8), pages 1851-1882, December.
    3. Guido Ascari, 2004. "Staggered Prices and Trend Inflation: Some Nuisances," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 7(3), pages 642-667, July.
    4. Michael Woodford, 2008. "How Important Is Money in the Conduct of Monetary Policy?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(8), pages 1561-1598, December.
    5. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    6. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    7. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    8. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    9. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    10. Gabriel Perez-Quiros & Margaret M. McConnell, 2000. "Output Fluctuations in the United States: What Has Changed since the Early 1980's?," American Economic Review, American Economic Association, vol. 90(5), pages 1464-1476, December.
    11. Nelson, Charles R & Schwert, G William, 1977. "Short-Term Interest Rates as Predictors of Inflation: On Testing the Hypothesis That the Real Rate of Interest is Constant," American Economic Review, American Economic Association, vol. 67(3), pages 478-486, June.
    12. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    13. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    14. Charles R. Nelson & Jaejoon Lee, 2007. "Expectation horizon and the Phillips Curve: the solution to an empirical puzzle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 161-178.
    15. Murray, Christian & Nikolsko-Rzhevskyy, Alex & Papell, David, 2008. "Inflation Persistence and the Taylor Principle," MPRA Paper 11353, University Library of Munich, Germany.
    16. Kang Kyu Ho & Kim Chang-Jin & Morley James, 2009. "Changes in U.S. Inflation Persistence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(4), pages 1-23, September.
    17. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    18. Timothy Cogley & Argia M. Sbordone, 2008. "Trend Inflation, Indexation, and Inflation Persistence in the New Keynesian Phillips Curve," American Economic Review, American Economic Association, vol. 98(5), pages 2101-2126, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castelnuovo, Efrem, 2010. "Trend inflation and macroeconomic volatilities in the post-WWII U.S. economy," The North American Journal of Economics and Finance, Elsevier, vol. 21(1), pages 19-33, March.
    2. Qazi Haque, 2022. "Monetary Policy, Inflation Target, and the Great Moderation: An Empirical Investigation," International Journal of Central Banking, International Journal of Central Banking, vol. 18(4), pages 1-52, October.
    3. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
    4. Berger, Tino & Everaert, Gerdie & Vierke, Hauke, 2016. "Testing for time variation in an unobserved components model for the U.S. economy," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 179-208.
    5. James McNeil & Gregor W. Smith, 2023. "The All‐Gap Phillips Curve," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(2), pages 269-282, April.
    6. Gbaguidi DAVID, 2011. "Expectations Impact On The Effectiveness Of The Inflation-Real Activity Trade-Off," Theoretical and Practical Research in the Economic Fields, ASERS Publishing, vol. 2(2), pages 141-181.
    7. Belomestny, Denis & Krymova, Ekaterina & Polbin, Andrey, 2021. "Bayesian TVP-VARX models with time invariant long-run multipliers," Economic Modelling, Elsevier, vol. 101(C).
    8. Gbaguidi, David Sedo, 2011. "Regime Switching in a New Keynesian Phillips Curve with Non-zero Steady-state Inflation Rate," MPRA Paper 35481, University Library of Munich, Germany.
    9. Baxa, Jaromír & Plašil, Miroslav & Vašíček, Bořek, 2015. "Changes in inflation dynamics under inflation targeting? Evidence from Central European countries," Economic Modelling, Elsevier, vol. 44(C), pages 116-130.
    10. Denis Belomestny & Ekaterina Krymova & Andrey Polbin, 2020. "Estimating TVP-VAR models with time invariant long-run multipliers," Papers 2008.00718, arXiv.org.
    11. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    12. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    13. Martínez-García Enrique, 2018. "Modeling time-variation over the business cycle (1960–2017): an international perspective," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
    14. Bloch, Laurence, 2012. "Product market regulation, trend inflation and inflation dynamics in the new Keynesian Phillips curve," Economic Modelling, Elsevier, vol. 29(5), pages 2058-2070.
    15. Lovcha, Yuliya & Pérez Laborda, Àlex, 2013. "A fractionally integrated approach to monetary policy and inflation dynamics," Working Papers 2072/211795, Universitat Rovira i Virgili, Department of Economics.
    16. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    17. Georgios P. Kouretas & Mark E. Wohar, 2012. "The dynamics of inflation: a study of a large number of countries," Applied Economics, Taylor & Francis Journals, vol. 44(16), pages 2001-2026, June.
    18. Gbaguidi, David, 2012. "La courbe de Phillips : temps d’arbitrage et/ou arbitrage de temps," L'Actualité Economique, Société Canadienne de Science Economique, vol. 88(1), pages 87-119, mars.
    19. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Phillips Curve Models with Non-Filtered Time Series," Tinbergen Institute Discussion Papers 13-011/III, Tinbergen Institute.

    More about this item

    Keywords

    New Keynesian Phillips Curve; Trend Inflation; Inflation Gap; Unobserved Components Model; Structural Breaks;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian; Modern Monetary Theory
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iek:wpaper:1305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kim, Jisoo (email available below). General contact details of provider: https://edirc.repec.org/data/ierkukr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.