IDEAS home Printed from https://ideas.repec.org/p/ieb/wpaper/doc2016-2.html
   My bibliography  Save this paper

Analysing the potential economic value of energy storage

Author

Listed:
  • Lisa Flatley

    (University of Warwick)

  • Monica Giulietti

    (Loughborough University)

  • Luigi Grossi

    (University of Verona)

  • Elisa Trujillo-Baute

    (University of Warwick and Chair of Energy Sustainability, Barcelona Institute of Economics)

  • Michael Waterson

    (University of Warwick)

Abstract

This paper examines the likely market for electrical energy storage from a market viewpoint, taking market prices as given and determining the extent to which a strategy of arbitrage across the day, buying at the lowest price times at night and selling at the highest times during the early evening, generates profits in the British context. The paper sets out the potential problems as the market moves to absorb increasing amounts of wind, then characterises the nature of prices, which reveals the importance of a strategy in which power is absorbed into store for a relatively few hours of the day and discharged over a relatively few hours. The paper models the ongoing costs of operation and compares them with revenues, but does not consider construction costs. It argues that additional incentives may need to be put into place in order to render storage over relatively longer periods more attractive.

Suggested Citation

  • Lisa Flatley & Monica Giulietti & Luigi Grossi & Elisa Trujillo-Baute & Michael Waterson, 2016. "Analysing the potential economic value of energy storage," Working Papers 2016/2, Institut d'Economia de Barcelona (IEB).
  • Handle: RePEc:ieb:wpaper:doc2016-2
    as

    Download full text from publisher

    File URL: http://ieb.ub.edu/wp-content/uploads/2018/04/2016-IEB-WorkingPaper-02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grossi, Luigi & Heim, Sven & Waterson, Michael, 2014. "A vision of the European energy future? The impact of the German response to the Fukushima earthquake," The Warwick Economics Research Paper Series (TWERPS) 1047, University of Warwick, Department of Economics.
    2. Flatley, Lisa & MacKay, Robert S. & Waterson, Michael, 2014. "Optimal strategies for operating energy storage in an arbitrage market," Economic Research Papers 270235, University of Warwick - Department of Economics.
    3. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    4. Esteban, Miguel & Zhang, Qi & Utama, Agya, 2012. "Estimation of the energy storage requirement of a future 100% renewable energy system in Japan," Energy Policy, Elsevier, vol. 47(C), pages 22-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2022. "Decarbonizing power systems: A critical review of the role of energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
    3. Waterson, Michael, 2017. "The characteristics of electricity storage, renewables and markets," Energy Policy, Elsevier, vol. 104(C), pages 466-473.
    4. Diego Aineto & Javier Iranzo-Sánchez & Lenin G. Lemus-Zúñiga & Eva Onaindia & Javier F. Urchueguía, 2019. "On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market," Energies, MDPI, vol. 12(11), pages 1-20, May.
    5. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    6. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    7. Williams, Olayinka & Green, Richard, 2022. "Electricity storage and market power," Energy Policy, Elsevier, vol. 164(C).
    8. Csereklyei, Zsuzsanna & Kallies, Anne & Diaz Valdivia, Andres, 2021. "The status of and opportunities for utility-scale battery storage in Australia: A regulatory and market perspective," Utilities Policy, Elsevier, vol. 73(C).
    9. Intini, Mario & Waterson, Michael, 2020. "Do British wind generators behave strategically in response to the Western Link interconnector?," The Warwick Economics Research Paper Series (TWERPS) 1242, University of Warwick, Department of Economics.
    10. Albert Hiesl & Amela Ajanovic & Reinhard Haas, 2020. "On current and future economics of electricity storage," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1176-1192, December.
    11. Moita, Rodrigo & Monte, Daniel, 2022. "The limits in the adoption of batteries," Energy Economics, Elsevier, vol. 107(C).
    12. Best, Rohan & Li, Han & Trück, Stefan & Truong, Chi, 2021. "Actual uptake of home batteries: The key roles of capital and policy," Energy Policy, Elsevier, vol. 151(C).
    13. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waterson, Michael, 2017. "The characteristics of electricity storage, renewables and markets," Energy Policy, Elsevier, vol. 104(C), pages 466-473.
    2. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    3. repec:dui:wpaper:1504 is not listed on IDEAS
    4. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    5. Esteban, Miguel & Portugal-Pereira, Joana, 2014. "Post-disaster resilience of a 100% renewable energy system in Japan," Energy, Elsevier, vol. 68(C), pages 756-764.
    6. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    7. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).
    8. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    9. Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
    10. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    11. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    12. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    13. Go, Roderick S. & Munoz, Francisco D. & Watson, Jean-Paul, 2016. "Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards," Applied Energy, Elsevier, vol. 183(C), pages 902-913.
    14. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    15. Ahmed Mohamed & Rémy Rigo-Mariani & Vincent Debusschere & Lionel Pin, 2023. "Stacked Revenues for Energy Storage Participating in Energy and Reserve Markets with an Optimal Frequency Regulation Modeling," Post-Print hal-04182119, HAL.
    16. Simshauser, P. & Gohde, N., 2024. "3-Party Covenant Financing of 'Semi-Regulated' Pumped Hydro Assets," Cambridge Working Papers in Economics 2425, Faculty of Economics, University of Cambridge.
    17. Yan, Xiaohe & Gu, Chenghong & Li, Furong & Xiang, Yue, 2018. "Network pricing for customer-operated energy storage in distribution networks," Applied Energy, Elsevier, vol. 212(C), pages 283-292.
    18. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Barra, P.H.A. & Coury, D.V. & Fernandes, R.A.S., 2020. "A survey on adaptive protection of microgrids and distribution systems with distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Zhixian Wang & Ying Wang & Qia Ding & Chen Wang & Kaifeng Zhang, 2020. "Energy Storage Economic Analysis of Multi-Application Scenarios in an Electricity Market: A Case Study of China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    21. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).

    More about this item

    Keywords

    Energy storage; arbitrage; electricity markets; market clearing;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • H54 - Public Economics - - National Government Expenditures and Related Policies - - - Infrastructures
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ieb:wpaper:doc2016-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iebubes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.