IDEAS home Printed from https://ideas.repec.org/p/hub/wpecon/201132.html
   My bibliography  Save this paper

Dose optimization in HDR brachytherapy: A literature review of quantitative models

Author

Listed:
  • De Boeck, Liesje

    (Hogeschool-Universiteit Brussel (HUB), Belgium)

  • Belien, Jeroen

    (Hogeschool-Universiteit Brussel (HUB), Belgium)

  • Egyed, Wendy

    (TriFinance, Zaventem, Belgium)

Abstract

HDR brachytherapy is a form of internal radiotherapy, in which a tumor receives a temporary high dose of radiation. The treatment is commonly used in clinical practice. We discuss the literature based on the following criteria: scope (interstitial or intracavitary), planning method (forward or inverse planning), objectives (in order to guarantee the right dose for the target area, critical organs and normal tissue), decision process (a priori, a posteriori or interactive), optimization techniques (exact, deterministic heuristic or stochastic heuristic method) and evaluation criteria (to measure the performance of the model results). The review serves three goals. First, we provide an overview of recent developments in the literature regarding the application of quantitative models for HDR dose optimization. Second, the classification allows to indicate recent developments in relation to each criterion and as such, provides an effective overview for researchers who are interested in a particular perspective. Finally, we want to explore opportunities for these quantitative models. We end the paper by revealing the main shortcomings in the current models: a better adaptation of clinical requirements to the mathematical model formulation, and a focus on probabilistic planning.

Suggested Citation

  • De Boeck, Liesje & Belien, Jeroen & Egyed, Wendy, 2011. "Dose optimization in HDR brachytherapy: A literature review of quantitative models," Working Papers 2011/32, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
  • Handle: RePEc:hub:wpecon:201132
    as

    Download full text from publisher

    File URL: https://lirias.hubrussel.be/bitstream/123456789/5208/1/11HRP32.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henri Ruotsalainen & Kaisa Miettinen & Jan-Erik Palmgren, 2010. "Interactive Multiobjective Optimization for 3D HDR Brachytherapy Applying IND-NIMBUS," Lecture Notes in Economics and Mathematical Systems, in: Dylan Jones & Mehrdad Tamiz & Jana Ries (ed.), New Developments in Multiple Objective and Goal Programming, pages 117-131, Springer.
    2. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    3. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    4. Eva Lee & Marco Zaider, 2003. "Mixed Integer Programming Approaches to Treatment Planning for Brachytherapy – Application to Permanent Prostate Implants," Annals of Operations Research, Springer, vol. 119(1), pages 147-163, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    3. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    4. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    5. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    6. Sandeep Rath & Kumar Rajaram, 2022. "Staff Planning for Hospitals with Implicit Cost Estimation and Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1271-1289, March.
    7. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    8. J. Octavio Gutierrez-Garcia & Kwang Mong Sim, 2012. "GA-based cloud resource estimation for agent-based execution of bag-of-tasks applications," Information Systems Frontiers, Springer, vol. 14(4), pages 925-951, September.
    9. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    10. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    11. Antti Peltokorpi, 2011. "How do strategic decisions and operative practices affect operating room productivity?," Health Care Management Science, Springer, vol. 14(4), pages 370-382, November.
    12. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    13. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    14. repec:ipg:wpaper:14 is not listed on IDEAS
    15. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    16. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    17. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    18. Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
    19. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    20. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    21. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    22. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).

    More about this item

    Keywords

    literature review; quantitative model; dose optimization; HDR brachytherapy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hub:wpecon:201132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sabine Janssens (email available below). General contact details of provider: https://edirc.repec.org/data/emhubbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.