IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v14y2012i4d10.1007_s10796-011-9327-8.html
   My bibliography  Save this article

GA-based cloud resource estimation for agent-based execution of bag-of-tasks applications

Author

Listed:
  • J. Octavio Gutierrez-Garcia

    (Gwangju Institute of Science and Technology)

  • Kwang Mong Sim

    (Gwangju Institute of Science and Technology)

Abstract

Executing bag-of-tasks applications in multiple Cloud environments while satisfying both consumers’ budgets and deadlines poses the following challenges: How many resources and how many hours should be allocated? What types of resources are required? How to coordinate the distributed execution of bag-of-tasks applications in resources composed from multiple Cloud providers?. This work proposes a genetic algorithm for estimating suboptimal sets of resources and an agent-based approach for executing bag-of-tasks applications simultaneously constrained by budgets and deadlines. Agents (endowed with distributed algorithms) compose resources and coordinate the execution of bag-of-tasks applications. Empirical results demonstrate that the genetic algorithm can autonomously estimate sets of resources to execute budget-constrained and deadline-constrained bag-of-tasks applications composed of more economical (but slower) resources in the presence of loose deadlines, and more powerful (but more expensive) resources in the presence of large budgets. Furthermore, agents can efficiently and successfully execute randomly generated bag-of-tasks applications in multi-Cloud environments.

Suggested Citation

  • J. Octavio Gutierrez-Garcia & Kwang Mong Sim, 2012. "GA-based cloud resource estimation for agent-based execution of bag-of-tasks applications," Information Systems Frontiers, Springer, vol. 14(4), pages 925-951, September.
  • Handle: RePEc:spr:infosf:v:14:y:2012:i:4:d:10.1007_s10796-011-9327-8
    DOI: 10.1007/s10796-011-9327-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-011-9327-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-011-9327-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    2. Brent R. Moulton, 1996. "Bias in the Consumer Price Index: What Is the Evidence?," Journal of Economic Perspectives, American Economic Association, vol. 10(4), pages 159-177, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason J. Jung & Yue-Shan Chang & Ying Liu & Chao-Chin Wu, 2012. "Advances in intelligent grid and cloud computing," Information Systems Frontiers, Springer, vol. 14(4), pages 823-825, September.
    2. Haoyi Xiong & Daqing Zhang & Daqiang Zhang & Vincent Gauthier & Kun Yang & Monique Becker, 2014. "MPaaS: Mobility prediction as a service in telecom cloud," Information Systems Frontiers, Springer, vol. 16(1), pages 59-75, March.
    3. Sanjaya K. Panda & Indrajeet Gupta & Prasanta K. Jana, 0. "Task scheduling algorithms for multi-cloud systems: allocation-aware approach," Information Systems Frontiers, Springer, vol. 0, pages 1-19.
    4. Li Chunlin & Li LaYuan, 2017. "Optimal scheduling across public and private clouds in complex hybrid cloud environment," Information Systems Frontiers, Springer, vol. 19(1), pages 1-12, February.
    5. Shuai Yuan & Sanjukta Das & Ram Ramesh & Chunming Qiao, 2023. "Availability-Aware Virtual Resource Provisioning for Infrastructure Service Agreements in the Cloud," Information Systems Frontiers, Springer, vol. 25(4), pages 1495-1512, August.
    6. John Oredo & Denis Dennehy, 2023. "Exploring the Role of Organizational Mindfulness on Cloud Computing and Firm Performance: The Case of Kenyan Organizations," Information Systems Frontiers, Springer, vol. 25(5), pages 2029-2050, October.
    7. Sanjaya K. Panda & Indrajeet Gupta & Prasanta K. Jana, 2019. "Task scheduling algorithms for multi-cloud systems: allocation-aware approach," Information Systems Frontiers, Springer, vol. 21(2), pages 241-259, April.
    8. Chulhwan Chris Bang, 2015. "Information systems frontiers: Keyword analysis and classification," Information Systems Frontiers, Springer, vol. 17(1), pages 217-237, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    3. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    4. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    5. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    6. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    7. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    8. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    9. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    10. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.
    11. H. Liao & Q. Wu, 2013. "Multi-objective optimization by learning automata," Journal of Global Optimization, Springer, vol. 55(2), pages 459-487, February.
    12. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    13. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    14. Lieu, Pang-Tien & Liang, Jung-Hui & Chen, Jui-Hui, 2008. "Consumer preferences and cost of living in Taiwan," Journal of Asian Economics, Elsevier, vol. 19(3), pages 224-235, June.
    15. Miśkiewicz, Janusz, 2010. "Entropy correlation distance method. The Euro introduction effect on the Consumer Price Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1677-1687.
    16. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    17. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    18. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    19. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    20. Y Xu & R Qu, 2011. "Solving multi-objective multicast routing problems by evolutionary multi-objective simulated annealing algorithms with variable neighbourhoods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 313-325, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:14:y:2012:i:4:d:10.1007_s10796-011-9327-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.