IDEAS home Printed from https://ideas.repec.org/p/hub/wpecon/200901.html
   My bibliography  Save this paper

The Great Divide in Scientific Productivity. Why the Average Scientist Does Not Exist

Author

Listed:
  • Kelchtermans, Stijn

    (Hogeschool-Universiteit Brussel (HUB), Belgium
    Katholieke Universiteit Leuven, Belgium)

  • Veugelers, Reinhilde

    (BEPA, European Commission, Brussels, Belgium
    Katholieke Universiteit Leuven, Belgium)

Abstract

We use a quantile regression approach to estimate the eects of age, gender, research funding, teaching load and other observed characteristics of academic researchers on the full distribution of research performance, both in its quantity (publications) and quality (citations) dimension. Exploiting the panel nature of our dataset, we estimate a correlated random-eects quantile regression model, accounting for unobserved heterogeneity of researchers. We employ recent advances in quantile regression that allow its application to count data. Estimation of the model for a panel of biomedical and exact scientists at the KU Leuven in the period 1992-2001 shows strong support for our quantile regression approach, revealing the dierential impact of almost all regressors along the distribution. We also .nd that variables like funding, teaching load and cohort have a dierent impact on research quantity than on research quality.

Suggested Citation

  • Kelchtermans, Stijn & Veugelers, Reinhilde, 2009. "The Great Divide in Scientific Productivity. Why the Average Scientist Does Not Exist," Working Papers 2009/01, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
  • Handle: RePEc:hub:wpecon:200901
    as

    Download full text from publisher

    File URL: https://lirias.hubrussel.be/bitstream/123456789/2165/1/09HRP01.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Levin, Sharon G & Stephan, Paula E, 1991. "Research Productivity over the Life Cycle: Evidence for Academic Scientists," American Economic Review, American Economic Association, vol. 81(1), pages 114-132, March.
    2. Martin Beck & Bernd Fitzenberger, 2004. "Changes in Union Membership Over Time: A Panel Analysis for West Germany," LABOUR, CEIS, vol. 18(3), pages 329-362, September.
    3. Yannis Bilias & Roger Koenker, 2001. "Quantile regression for duration data: A reappraisal of the Pennsylvania Reemployment Bonus Experiments," Empirical Economics, Springer, vol. 26(1), pages 199-220.
    4. Omar Arias & Walter Sosa-Escudero & Kevin F. Hallock, 2001. "Individual heterogeneity in the returns to schooling: instrumental variables quantile regression using twins data," Empirical Economics, Springer, vol. 26(1), pages 7-40.
    5. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    6. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    7. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    8. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    9. Machado, Jose A.F. & Silva, J. M. C. Santos, 2005. "Quantiles for Counts," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1226-1237, December.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Buchinsky, Moshe, 1994. "Changes in the U.S. Wage Structure 1963-1987: Application of Quantile Regression," Econometrica, Econometric Society, vol. 62(2), pages 405-458, March.
    12. Veugelers, Reinhilde & Kelchtermans, Stijn, 2005. "Top Research Productivity and its Persistence," CEPR Discussion Papers 5415, C.E.P.R. Discussion Papers.
    13. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joachim Wagner, 2014. "Exports, foreign direct investments and productivity: are services firms different?," The Service Industries Journal, Taylor & Francis Journals, vol. 34(1), pages 24-37, January.
    2. Duschl, Matthias & Schimke, Antje & Brenner, Thomas & Luxen, Dennis, 2011. "Firm growth and the spatial impact of geolocated external factors: Empirical evidence for German manufacturing firms," Working Paper Series in Economics 36, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    3. Sula, Ozan, 2008. "Demand for International Reserves: A Quantile Regression Approach," MPRA Paper 11680, University Library of Munich, Germany.
    4. Antecol, Heather & Eren, Ozkan & Ozbeklik, Serkan, 2013. "The effect of Teach for America on the distribution of student achievement in primary school: Evidence from a randomized experiment," Economics of Education Review, Elsevier, vol. 37(C), pages 113-125.
    5. Sula, Ozan, 2011. "Demand for international reserves in developing nations: A quantile regression approach," Journal of International Money and Finance, Elsevier, vol. 30(5), pages 764-777, September.
    6. Joachim Wagner, 2016. "From Estimation Results to Stylized Facts: Twelve Recommendations for Empirical Research in International Activities of Heterogeneous Firms," World Scientific Book Chapters, in: Microeconometrics of International Trade, chapter 15, pages 479-514, World Scientific Publishing Co. Pte. Ltd..
    7. Bartelsman, Eric & Dobbelaere, Sabien & Peters, Bettina, 2013. "Allocation of Human Capital and Innovation at the Frontier: Firm-Level Evidence on Germany and the Netherlands," IZA Discussion Papers 7540, Institute of Labor Economics (IZA).
    8. Mercedes Teruel & Agustí Segarra, 2011. "Productivity and R&D sources in manufacturing and service firms in Catalonia: a regional approach," ERSA conference papers ersa11p1860, European Regional Science Association.
    9. Matthias Duschl & Antje Schimke & Thomas Brenner & Dennis Luxen, 2011. "Firm Growth and the Spatial Impact of Geolocated External Factors – Empirical Evidence for German Manufacturing Firms," Working Papers on Innovation and Space 2011-03, Philipps University Marburg, Department of Geography.
    10. Alex Coad & Rekha Rao, 2011. "The firm-level employment effects of innovations in high-tech US manufacturing industries," Journal of Evolutionary Economics, Springer, vol. 21(2), pages 255-283, May.
    11. Brown, Christian & Routon, P. Wesley, 2018. "On the distributional and evolutionary nature of the obesity wage penalty," Economics & Human Biology, Elsevier, vol. 28(C), pages 160-172.
    12. Powell, David & Wagner, Joachim, 2010. "The Exporter Productivity Premium along the Productivity Distribution: First Evidence from a Quantile Regression Approach for Fixed Effects Panel Data Models," IZA Discussion Papers 5112, Institute of Labor Economics (IZA).
    13. Christian Manuel Posso, 2010. "Calidad del empleo y segmentación laboral: un análisis para el mercado laboral colombiano 2001-2006," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, February.
    14. Christian Brown, 2019. "Incarceration and Earnings: Distributional and Long-Term Effects," Journal of Labor Research, Springer, vol. 40(1), pages 58-83, March.
    15. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    16. Alex Coad & Rekha Rao, 2007. "The employment effects of innovation," Documents de travail du Centre d'Economie de la Sorbonne r07036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Fattouh, Bassam & Scaramozzino, Pasquale & Harris, Laurence, 2005. "Capital structure in South Korea: a quantile regression approach," Journal of Development Economics, Elsevier, vol. 76(1), pages 231-250, February.
    18. Wiji Arulampalam & Alison Booth & Mark Bryan, 2010. "Are there asymmetries in the effects of training on the conditional male wage distribution?," Journal of Population Economics, Springer;European Society for Population Economics, vol. 23(1), pages 251-272, January.
    19. Dosi, Giovanni & Virgillito, Maria Enrica & Yu, Xiaodan, 2020. "The wage-productivity nexus in the world factory economy," World Development, Elsevier, vol. 129(C).
    20. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.

    More about this item

    Keywords

    economics of science; research productivity; quantile regression; count data; random effects;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • L31 - Industrial Organization - - Nonprofit Organizations and Public Enterprise - - - Nonprofit Institutions; NGOs; Social Entrepreneurship
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hub:wpecon:200901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sabine Janssens (email available below). General contact details of provider: https://edirc.repec.org/data/emhubbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.