IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0048214.html
   My bibliography  Save this article

Forgetting What Was Where: The Fragility of Object-Location Binding

Author

Listed:
  • Yoni Pertzov
  • Mia Yuan Dong
  • Muy-Cheng Peich
  • Masud Husain

Abstract

Although we frequently take advantage of memory for objects locations in everyday life, understanding how an object’s identity is bound correctly to its location remains unclear. Here we examine how information about object identity, location and crucially object-location associations are differentially susceptible to forgetting, over variable retention intervals and memory load. In our task, participants relocated objects to their remembered locations using a touchscreen. When participants mislocalized objects, their reports were clustered around the locations of other objects in the array, rather than occurring randomly. These ‘swap’ errors could not be attributed to simple failure to remember either the identity or location of the objects, but rather appeared to arise from failure to bind object identity and location in memory. Moreover, such binding failures significantly contributed to decline in localization performance over retention time. We conclude that when objects are forgotten they do not disappear completely from memory, but rather it is the links between identity and location that are prone to be broken over time.

Suggested Citation

  • Yoni Pertzov & Mia Yuan Dong & Muy-Cheng Peich & Masud Husain, 2012. "Forgetting What Was Where: The Fragility of Object-Location Binding," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-12, October.
  • Handle: RePEc:plo:pone00:0048214
    DOI: 10.1371/journal.pone.0048214
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048214
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0048214&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0048214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven J. Luck & Edward K. Vogel, 1997. "The capacity of visual working memory for features and conjunctions," Nature, Nature, vol. 390(6657), pages 279-281, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri A. Markov & Igor S. Utochkin, 2017. "The Effect of Object Distinctiveness on Object-Location Binding in Visual Working Memory," HSE Working papers WP BRP 79/PSY/2017, National Research University Higher School of Economics.
    2. Yuri A. Markov & Natalia A. Tiurina & Igor S. Utochkin, 2018. "Different features are stored independently in visual working memory but mediated by object-based representations," HSE Working papers WP BRP 101/PSY/2018, National Research University Higher School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor S. Utochkin & Vladislav A. Khvostov & Yulia M. Stakina, 2017. "Ensemble-Based Segmentation in the Perception of Multiple Feature Conjunctions," HSE Working papers WP BRP 78/PSY/2017, National Research University Higher School of Economics.
    2. Jastrzębski, Jan & Ciechanowska, Iwona & Chuderski, Adam, 2018. "The strong link between fluid intelligence and working memory cannot be explained away by strategy use," Intelligence, Elsevier, vol. 66(C), pages 44-53.
    3. Aki Kondo & Jun Saiki, 2012. "Feature-Specific Encoding Flexibility in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    4. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Robert W. Faff & Sebastian Kernbach, 2021. "A visualisation approach for pitching research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5177-5197, December.
    6. Yuri A. Markov & Natalia A. Tiurina & Igor S. Utochkin, 2018. "Different features are stored independently in visual working memory but mediated by object-based representations," HSE Working papers WP BRP 101/PSY/2018, National Research University Higher School of Economics.
    7. Tullo, Domenico & Faubert, Jocelyn & Bertone, Armando, 2018. "The characterization of attention resource capacity and its relationship with fluid reasoning intelligence: A multiple object tracking study," Intelligence, Elsevier, vol. 69(C), pages 158-168.
    8. Jifan Zhou & Jun Yin & Tong Chen & Xiaowei Ding & Zaifeng Gao & Mowei Shen, 2011. "Visual Working Memory Capacity Does Not Modulate the Feature-Based Information Filtering in Visual Working Memory," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
    9. Nathaniel J. S. Ashby & Stephan Dickert & Andreas Glockner, 2012. "Focusing on what you own: Biased information uptake due to ownership," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 7(3), pages 254-267, May.
    10. Lior Fink & Daniele Papismedov, 2023. "On the Same Page? What Users Benefit from a Desktop View on Mobile Devices," Information Systems Research, INFORMS, vol. 34(2), pages 423-441, June.
    11. Li, Qian & Huang, Zhuowei (Joy) & Christianson, Kiel, 2016. "Visual attention toward tourism photographs with text: An eye-tracking study," Tourism Management, Elsevier, vol. 54(C), pages 243-258.
    12. Yuri A. Markov & Igor S. Utochkin, 2017. "The Effect of Object Distinctiveness on Object-Location Binding in Visual Working Memory," HSE Working papers WP BRP 79/PSY/2017, National Research University Higher School of Economics.
    13. Carlo Baldassi & Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Marco Pirazzini, 2020. "A Behavioral Characterization of the Drift Diffusion Model and Its Multialternative Extension for Choice Under Time Pressure," Management Science, INFORMS, vol. 66(11), pages 5075-5093, November.
    14. S. Cerreia-Vioglio & F. Maccheroni & M. Marinacci & A. Rustichini, 2017. "Multinomial logit processes and preference discovery: inside and outside the black box," Working Papers 615, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    15. J David Timm & Frank Papenmeier, 2019. "Reorganization of spatial configurations in visual working memory: A matter of set size?," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
    16. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2020. "Multinomial logit processes and preference discovery: outside and inside the black box," Working Papers 663, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    17. Clark, Cameron M. & Lawlor-Savage, Linette & Goghari, Vina M., 2017. "Comparing brain activations associated with working memory and fluid intelligence," Intelligence, Elsevier, vol. 63(C), pages 66-77.
    18. Ociepka, Michał & Kałamała, Patrycja & Chuderski, Adam, 2022. "High individual alpha frequency brains run fast, but it does not make them smart," Intelligence, Elsevier, vol. 92(C).
    19. repec:cup:judgdm:v:7:y:2012:i:3:p:254-267 is not listed on IDEAS
    20. Shaiyan Keshvari & Ronald van den Berg & Wei Ji Ma, 2013. "No Evidence for an Item Limit in Change Detection," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.
    21. Gregor Hardiess & Kai Basten & Hanspeter A Mallot, 2011. "Acquisition vs. Memorization Trade-Offs Are Modulated by Walking Distance and Pattern Complexity in a Large-Scale Copying Paradigm," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-11, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0048214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.