IDEAS home Printed from https://ideas.repec.org/p/hhs/vtiwps/2023_002.html
   My bibliography  Save this paper

Projecting CO2 emissions from the Swedish car fleet: comparing results of a model used by the European Commission and two national Swedish models

Author

Listed:
  • Pyddoke, Roger

    (Swedish National Road & Transport Research Institute (VTI))

  • Algers, Staffan

    (Swedish National Road & Transport Research Institute (VTI))

Abstract

European Union Member States may want to know how far towards their national climate goals currently enacted national policies and Fit for 55 policies can take them. This study compares CO2 emissions from future car fleets and car use in Sweden projected by three models: an application of the PRIMES-TREMOVE model for Sweden, the Swedish Car Fleet Model, and the Swedish Transport Administration model. The projections use official Swedish energy price and policy trajectories as of late 2021. The results of all three models indicate that the evolution of car fleets and car use would bring the emissions from cars close to Sweden’s national goal of reducing CO2 emissions from domestic transport by 70% relative to 2010. The models’ results are very similar, although the models appear to differ considerably. The source of the CO2 emissions, i.e. the car fleet, develops differently in the different models. We discuss the similarities and differences among the models related to emissions and car fleet effects. The discussion concerns conditions prevailing before the pandemic and the Russian invasion of Ukraine. Two important policy implications follow from this. A government keen on achieving its national emission reduction goals may need to compensate for recent energy price changes occurring after forecasts were made by adjusting its policy instruments. Slower adjustments may create higher or even prohibitive costs of achieving goals. By regularly updating projections for exogenous price changes, such scenarios may be prevented.

Suggested Citation

  • Pyddoke, Roger & Algers, Staffan, 2023. "Projecting CO2 emissions from the Swedish car fleet: comparing results of a model used by the European Commission and two national Swedish models," Working Papers 2023:2, Swedish National Road & Transport Research Institute (VTI).
  • Handle: RePEc:hhs:vtiwps:2023_002
    as

    Download full text from publisher

    File URL: https://www.transportportal.se/VTISWoPEc/VTI%202023%202.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siskos, Pelopidas & Capros, Pantelis & De Vita, Alessia, 2015. "CO2 and energy efficiency car standards in the EU in the context of a decarbonisation strategy: A model-based policy assessment," Energy Policy, Elsevier, vol. 84(C), pages 22-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Shin, 2018. "Transport policies, induced traffic and their influence on vehicle emissions in developed and developing countries," Energy Policy, Elsevier, vol. 121(C), pages 264-274.
    2. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    3. Fabio Luis Marques dos Santos & Paolo Tecchio & Fulvio Ardente & Ferenc Pekár, 2021. "User Automotive Powertrain-Type Choice Model and Analysis Using Neural Networks," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    4. Mulholland, Eamonn & O'Shea, Richard S.K. & Murphy, Jerry D. & Ó Gallachóir, Brian P., 2016. "Low carbon pathways for light goods vehicles in Ireland," Research in Transportation Economics, Elsevier, vol. 57(C), pages 53-62.
    5. Jaewon Lim & DooHwan Won, 2019. "Impact of CARB’s Tailpipe Emission Standard Policy on CO 2 Reduction among the U.S. States," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
    6. Niall Farrell & Seán Lyons, 2016. "Equity impacts of energy and climate policy: who is shouldering the burden?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(5), pages 492-509, September.
    7. Siskos, Pelopidas & Moysoglou, Yannis, 2019. "Assessing the impacts of setting CO2 emission targets on truck manufacturers: A model implementation and application for the EU," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 123-138.
    8. Damert, Matthias & Rudolph, Frederic, 2018. "Policy options for a decarbonisation of passenger cars in the EU: Recommendations based on a literature review," Wuppertal Papers 193, Wuppertal Institute for Climate, Environment and Energy.
    9. Siskos, Pelopidas & Zazias, Georgios & Petropoulos, Apostolos & Evangelopoulou, Stavroula & Capros, Pantelis, 2018. "Implications of delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model," Energy Policy, Elsevier, vol. 121(C), pages 48-60.
    10. Walter, Antonia & Held, Maximilian & Pareschi, Giacomo & Pengg, Hermann & Madlener, Reinhard, 2020. "Decarbonizing the European Automobile Fleet: Impacts of 1.5 °C-compliant Climate Policies in Germany and Norway," FCN Working Papers 18/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    11. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Georgios Zazias & Pantelis Capros, 2019. "Factors Influencing Electric Vehicle Penetration in the EU by 2030: A Model-Based Policy Assessment," Energies, MDPI, vol. 12(14), pages 1-25, July.
    12. Sajid, M. Jawad & Cao, Qingren & Kang, Wei, 2019. "Transport sector carbon linkages of EU's top seven emitters," Transport Policy, Elsevier, vol. 80(C), pages 24-38.
    13. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
    14. Travesset-Baro, Oriol & Gallachóir, Brian P.Ó. & Jover, Eric & Rosas-Casals, Marti, 2016. "Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis," Energy Policy, Elsevier, vol. 96(C), pages 78-92.
    15. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    16. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    17. Massimo Delogu & Francesco Del Pero & Marco Pierini, 2016. "Lightweight Design Solutions in the Automotive Field: Environmental Modelling Based on Fuel Reduction Value Applied to Diesel Turbocharged Vehicles," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    18. Agovino, Massimiliano & Ferraro, Aniello & Garofalo, Antonio, 2023. "Are green cars an optimal and efficient choice for motorists? Evidence from Italy," Transport Policy, Elsevier, vol. 141(C), pages 140-151.
    19. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    20. Farida Shaban & Pelopidas Siskos & Christos Tjortjis, 2023. "Electromobility Prospects in Greece by 2030: A Regional Perspective on Strategic Policy Analysis," Energies, MDPI, vol. 16(16), pages 1-17, August.

    More about this item

    Keywords

    Keywords CO2 emissions; Car fleet; Car use; Projection; Electrification; Biofuel;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:vtiwps:2023_002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteket vid VTI or Emil Svensson or Claes Eriksson or Tova Äng (email available below). General contact details of provider: https://edirc.repec.org/data/tevtise.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.