IDEAS home Printed from https://ideas.repec.org/p/hhs/sdueko/2014_006.html
   My bibliography  Save this paper

On the Core of Games with Communication Structures

Author

Listed:
  • Albizuri, M. Josune

    (Faculty of Economics and Business Administration)

  • Sudhölter, Peter

    (Department of Business and Economics)

Abstract

It is well-known that the core on several domains of cooperative transferable utility (TU) and nontransferable utility (NTU) games is characterized by various combinations of axioms containing some versions of the reduced game property, of its converse, or of the reconfirmation property with respect to the Davis-Maschler reduced game. We show that these characterizations are still valid for games with communication structures a la Myerson when using the notion of the reduced communication structure that establishes a new link between two inside players if they can communicate via outside players. Thus, it is shown that, if communication structures are present, the core may still be characterized on balanced TU games, on totally balanced TU games, on NTU games with a nonempty core, on the domains of all TU or NTU games, and on several other interesting domains of TU and NTU games. As a byproduct we construct, for any NTU game with communication structure, a certain classical NTU game with the same core that may be regarded as its Myerson restricted NTU game.

Suggested Citation

  • Albizuri, M. Josune & Sudhölter, Peter, 2014. "On the Core of Games with Communication Structures," Discussion Papers on Economics 6/2014, University of Southern Denmark, Department of Economics.
  • Handle: RePEc:hhs:sdueko:2014_006
    as

    Download full text from publisher

    File URL: https://www.sdu.dk/-/media/files/om_sdu/institutter/ivoe/disc_papers/disc_2014/dpbe6_2014.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2010. "The average tree solution for cooperative games with communication structure," Other publications TiSEM 24359ac5-6399-42ee-8f0b-7, Tilburg University, School of Economics and Management.
    2. Serrano, Roberto & Volij, Oscar, 1998. "Axiomatizations of neoclassical concepts for economies," Journal of Mathematical Economics, Elsevier, vol. 30(1), pages 87-108, August.
    3. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    4. Predtetchinski, Arkadi & Jean-Jacques Herings, P., 2004. "A necessary and sufficient condition for non-emptiness of the core of a non-transferable utility game," Journal of Economic Theory, Elsevier, vol. 116(1), pages 84-92, May.
    5. Peleg, Bezalel, 1985. "An axiomatization of the core of cooperative games without side payments," Journal of Mathematical Economics, Elsevier, vol. 14(2), pages 203-214, April.
    6. Peter Sudhölter & Yan-An Hwang, 2001. "Axiomatizations of the core on the universal domain and other natural domains," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(4), pages 597-623.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Albizuri & Peter Sudhölter, 2016. "Characterizations of the core of TU and NTU games with communication structures," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(2), pages 451-475, February.
    2. Camelia Bejan & Juan Gómez, 2012. "Axiomatizing core extensions," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 885-898, November.
    3. Sudhölter, Peter & Zarzuelo, José M., 2015. "On highway problems," Discussion Papers on Economics 13/2015, University of Southern Denmark, Department of Economics.
    4. Yan-An Hwang & Yu-Hsien Liao, 2010. "The unit-level-core for multi-choice games: the replicated core for TU games," Journal of Global Optimization, Springer, vol. 47(2), pages 161-171, June.
    5. Sudhölter, Peter & Zarzuelo, José M., 2017. "Characterizations of highway toll pricing methods," European Journal of Operational Research, Elsevier, vol. 260(1), pages 161-170.
    6. Yan-An Hwang, 2013. "On the core: complement-reduced game and max-reduced game," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 339-355, May.
    7. Ling-Yun Chung & Yu-Hsien Liao, 2014. "A Consistent Allocation Rule: Non-emptiness, Reductions, Domination and Axiomatization," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 61-74, November.
    8. Yu-Hsien Liao, 2018. "The precore: converse consistent enlargements and alternative axiomatic results," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 146-163, April.
    9. Yan-An Hwang & Yu-Hsien Liao, 2011. "The multi-core, balancedness and axiomatizations for multi-choice games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 677-689, November.
    10. Yu-Hsien Liao, 2012. "Converse consistent enlargements of the unit-level-core of the multi-choice games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 743-753, December.
    11. Yan-An Hwang, 2006. "Two characterizations of the consistent egalitarian solution and of the core on NTU games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(3), pages 557-568, December.
    12. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    13. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    14. Roberto Serrano, 2007. "Cooperative Games: Core and Shapley Value," Working Papers wp2007_0709, CEMFI.
    15. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Other publications TiSEM d863606f-a58a-4f92-894d-e, Tilburg University, School of Economics and Management.
    16. Nils Roehl, 2013. "Two-Stage Allocation Rules," Working Papers Dissertations 01, Paderborn University, Faculty of Business Administration and Economics.
    17. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    18. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    19. Baron, Richard & Béal, Sylvain & Remila, Eric & Solal, Philippe, 2008. "Average tree solutions for graph games," MPRA Paper 10189, University Library of Munich, Germany.
    20. Koshevoy, G.A. & Suzuki, T. & Talman, A.J.J., 2013. "Solutions For Games With General Coalitional Structure And Choice Sets," Other publications TiSEM a831011f-430e-4e82-b6f6-5, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    TU and NTU game; Solution; Communication structure; Core;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sdueko:2014_006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Astrid Holm Nielsen (email available below). General contact details of provider: https://edirc.repec.org/data/okioudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.