IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2015_032.html
   My bibliography  Save this paper

Compromises and Rewards: Stable and Non-manipulable Probabilistic Matching

Author

Listed:

Abstract

Can we reconcile stability with non-manipulability in two-sided matching problems by selecting lotteries over matchings? We parameterize, through sets of utility functions, how ordinal preferences induce preferences over lotteries and develop corresponding notions of ex-ante stability and non-manipulability. For most sets, the properties are incompatible. However, for the set of utility functions with increasing differences, stability and non-manipulability characterize Compromises and Rewards. This novel rule is fundamentally different from the one that has attracted most attention in the literature, Deferred Acceptance. We then derive complementary negative results that show that increasing differences essentially is a necessary condition for the properties to be compatible.

Suggested Citation

  • Gudmundsson, Jens, 2015. "Compromises and Rewards: Stable and Non-manipulable Probabilistic Matching," Working Papers 2015:32, Lund University, Department of Economics, revised 19 Oct 2017.
  • Handle: RePEc:hhs:lunewp:2015_032
    as

    Download full text from publisher

    File URL: http://project.nek.lu.se/publications/workpap/papers/wp15_32.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Damiano, Ettore & Lam, Ricky, 2005. "Stability in dynamic matching markets," Games and Economic Behavior, Elsevier, vol. 52(1), pages 34-53, July.
    2. Chung, Kim-Sau, 2000. "On the Existence of Stable Roommate Matchings," Games and Economic Behavior, Elsevier, vol. 33(2), pages 206-230, November.
    3. Atila Abdulkadiroglu & Tayfun Sonmez, 1998. "Random Serial Dictatorship and the Core from Random Endowments in House Allocation Problems," Econometrica, Econometric Society, vol. 66(3), pages 689-702, May.
    4. B. D. Bernheim & S. N. Slavov, 2009. "A Solution Concept for Majority Rule in Dynamic Settings," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(1), pages 33-62.
    5. Bogomolnaia, Anna & Moulin, Herve, 2001. "A New Solution to the Random Assignment Problem," Journal of Economic Theory, Elsevier, vol. 100(2), pages 295-328, October.
    6. Anna Bogomolnaia & Herve Moulin, 2004. "Random Matching Under Dichotomous Preferences," Econometrica, Econometric Society, vol. 72(1), pages 257-279, January.
    7. Shapley, Lloyd & Scarf, Herbert, 1974. "On cores and indivisibility," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 23-37, March.
    8. Chung-Piaw Teo & Jay Sethuraman, 1998. "The Geometry of Fractional Stable Matchings and Its Applications," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 874-891, November.
    9. Alcalde, Jose & Barbera, Salvador, 1994. "Top Dominance and the Possibility of Strategy-Proof Stable Solutions to Matching Problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(3), pages 417-435, May.
    10. Gudmundsson , Jens, 2014. "Sequences in Pairing Problems: A New Approach to Reconcile Stability with Strategy-Proofness for Elementary Matching Problems," Working Papers 2014:40, Lund University, Department of Economics.
    11. Abdulkadiroglu, Atila & Sonmez, Tayfun, 1999. "House Allocation with Existing Tenants," Journal of Economic Theory, Elsevier, vol. 88(2), pages 233-260, October.
    12. Roth, Alvin E, 1991. "A Natural Experiment in the Organization of Entry-Level Labor Markets: Regional Markets for New Physicians and Surgeons in the United Kingdom," American Economic Review, American Economic Association, vol. 81(3), pages 415-440, June.
    13. Rubinstein, Ariel, 1979. "A Note about the "Nowhere Denseness" of Societies Having an Equilibrium under Majority Rule," Econometrica, Econometric Society, vol. 47(2), pages 511-514, March.
    14. Alvin E. Roth & Uriel G. Rothblum & John H. Vande Vate, 1993. "Stable Matchings, Optimal Assignments, and Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 803-828, November.
    15. Roth, Alvin E, 1984. "The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 991-1016, December.
    16. Doğan, Battal & Yıldız, Kemal, 2016. "Efficiency and stability of probabilistic assignments in marriage problems," Games and Economic Behavior, Elsevier, vol. 95(C), pages 47-58.
    17. Matthew O Jackson & Hugo F Sonnenschein, 2007. "Overcoming Incentive Constraints by Linking Decisions -super-1," Econometrica, Econometric Society, vol. 75(1), pages 241-257, January.
    18. Alvin E. Roth & Ran I. Shorrer, "undated". "The redesign of the medical intern assignment mechanism in Israel," Working Paper 242036, Harvard University OpenScholar.
    19. Elliott Peranson & Alvin E. Roth, 1999. "The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design," American Economic Review, American Economic Association, vol. 89(4), pages 748-780, September.
    20. Alvin E. Roth, 1982. "The Economics of Matching: Stability and Incentives," Mathematics of Operations Research, INFORMS, vol. 7(4), pages 617-628, November.
    21. Kesten, Onur, 2009. "Why do popular mechanisms lack efficiency in random environments?," Journal of Economic Theory, Elsevier, vol. 144(5), pages 2209-2226, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ANDERSSON, Tommy & EHLERS, Lars & MARTINELLO, Alessandro, 2018. "Dynamic refugee matching," Cahiers de recherche 2018-16, Universite de Montreal, Departement de sciences economiques.
    2. Manjunath, Vikram, 2016. "Fractional matching markets," Games and Economic Behavior, Elsevier, vol. 100(C), pages 321-336.
    3. Alva, Samson & Manjunath, Vikram, 2020. "The impossibility of strategy-proof, Pareto efficient, and individually rational rules for fractional matching," Games and Economic Behavior, Elsevier, vol. 119(C), pages 15-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roth, Alvin E. & Sonmez, Tayfun & Utku Unver, M., 2005. "Pairwise kidney exchange," Journal of Economic Theory, Elsevier, vol. 125(2), pages 151-188, December.
    2. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    3. Kóczy Á., László, 2009. "Központi felvételi rendszerek. Taktikázás és stabilitás [Central admission systems. Stratagems and stability]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 422-442.
    4. Bettina Klaus & David F. Manlove & Francesca Rossi, 2014. "Matching under Preferences," Cahiers de Recherches Economiques du Département d'économie 14.07, Université de Lausanne, Faculté des HEC, Département d’économie.
    5. Alvin E. Roth, 2009. "What Have We Learned from Market Design?," Innovation Policy and the Economy, University of Chicago Press, vol. 9(1), pages 79-112.
    6. Atila Abdulkadiroglu & Parag A. Pathak & Alvin E. Roth & Tayfun Sönmez, 2006. "Changing the Boston School Choice Mechanism," Boston College Working Papers in Economics 639, Boston College Department of Economics.
    7. Sebastian Montano Correa, 2015. "Compulsory Social Service Matching Market for Physicians in Colombia," Documentos CEDE 12856, Universidad de los Andes, Facultad de Economía, CEDE.
    8. Pablo Guillen & Onur Kesten, 2012. "Matching Markets With Mixed Ownership: The Case For A Real‐Life Assignment Mechanism," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 1027-1046, August.
    9. Aziz, Haris & Brandl, Florian, 2022. "The vigilant eating rule: A general approach for probabilistic economic design with constraints," Games and Economic Behavior, Elsevier, vol. 135(C), pages 168-187.
    10. Konishi, Hideo & Unver, M. Utku, 2006. "Credible group stability in many-to-many matching problems," Journal of Economic Theory, Elsevier, vol. 129(1), pages 57-80, July.
    11. Ivan Balbuzanov & Maciej H. Kotowski, 2019. "Endowments, Exclusion, and Exchange," Econometrica, Econometric Society, vol. 87(5), pages 1663-1692, September.
    12. Kojima, Fuhito, 2013. "Efficient resource allocation under multi-unit demand," Games and Economic Behavior, Elsevier, vol. 82(C), pages 1-14.
    13. Andersson, Tommy & Csehz, Ágnes & Ehlers, Lars & Erlanson, Albin, 2018. "Organizing Time Banks: Lessons from Matching Markets," Working Papers 2018:19, Lund University, Department of Economics, revised 08 Mar 2019.
    14. Haeringer, Guillaume & Klijn, Flip, 2009. "Constrained school choice," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1921-1947, September.
    15. Kesten, Onur & Unver, Utku, 2015. "A theory of school choice lotteries," Theoretical Economics, Econometric Society, vol. 10(2), May.
    16. YIlmaz, Özgür, 2010. "The probabilistic serial mechanism with private endowments," Games and Economic Behavior, Elsevier, vol. 69(2), pages 475-491, July.
    17. Takumi Kongo, 2013. "An incompatibility between recursive unanimity and strategy-proofness in two-sided matching problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 461-478, February.
    18. Fuhito Kojima & Parag A. Pathak, 2009. "Incentives and Stability in Large Two-Sided Matching Markets," American Economic Review, American Economic Association, vol. 99(3), pages 608-627, June.
    19. Aziz, Haris & Brandt, Felix & Harrenstein, Paul, 2013. "Pareto optimality in coalition formation," Games and Economic Behavior, Elsevier, vol. 82(C), pages 562-581.
    20. Han, Xiang, 2024. "A theory of fair random allocation under priorities," Theoretical Economics, Econometric Society, vol. 19(3), July.

    More about this item

    Keywords

    Pairing; Lottery; Stability; Non-manipulability; Compromises; Rewards;
    All these keywords.

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D02 - Microeconomics - - General - - - Institutions: Design, Formation, Operations, and Impact
    • D60 - Microeconomics - - Welfare Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2015_032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iker Arregui Alegria (email available below). General contact details of provider: https://edirc.repec.org/data/delunse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.