IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2013_038.html
   My bibliography  Save this paper

How Flexible are the Inflation Targets? A Bayesian MCMC Estimator of the Long Memory Parameter in a State Space Model

Author

Listed:

Abstract

Several central banks have adopted inflation targets. The implementation of these targets is flexible; the central banks aim to meet the target over the long term but allow inflation to deviate from the target in the short-term in order to avoid unnecessary volatility in the real economy. In this paper, we propose modeling the degree of flexibility using an AFRIMA model. Under the assumption that the central bankers control the long-run inflation rates, the fractional integration order captures the flexibility of the inflation targets. A higher integration order is associated with a more flexible target. Several estimators of the fractional integration order have been proposed in the literature. Grassi and Magistris (2011) show that a state-based maximum likelihood estimator is superior to other estimators, but our simulations show that their finding is over-biased for a nearly non-stationary time series. We resolve this issue by using a Bayesian Monte Carlo Markov Chain (MCMC) estimator. Applying this estimator to inflation from six inflation-targeting countries for the period 1999M1 to 2013M3, we find that inflation is integrated of order 0.8 to 0.9 depending on the country. The inflation targets are thus implemented with a high degree of flexibility.

Suggested Citation

  • Andersson, Fredrik N.G. & Li, Yushu, 2013. "How Flexible are the Inflation Targets? A Bayesian MCMC Estimator of the Long Memory Parameter in a State Space Model," Working Papers 2013:38, Lund University, Department of Economics.
  • Handle: RePEc:hhs:lunewp:2013_038
    as

    Download full text from publisher

    File URL: http://project.nek.lu.se/publications/workpap/papers/WP13_38.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    3. Fredrik Andersson, 2014. "Exchange rates dynamics revisited: a panel data test of the fractional integration order," Empirical Economics, Springer, vol. 47(2), pages 389-409, September.
    4. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    5. Tkacz Greg, 2001. "Estimating the Fractional Order of Integration of Interest Rates Using a Wavelet OLS Estimator," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-15, April.
    6. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    7. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    8. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    9. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
    10. Coleman, Simeon & Sirichand, Kavita, 2012. "Fractional integration and the volatility of UK interest rates," Economics Letters, Elsevier, vol. 116(3), pages 381-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersson, Fredrik N. G. & Li, Yushu, 2014. "Are Central Bankers Inflation Nutters? - A Bayesian MCMC Estimator of the Long Memory Parameter in a State Space Model," Discussion Papers 2014/38, Norwegian School of Economics, Department of Business and Management Science.
    2. Fredrik N. G. Andersson & Yushu Li, 2020. "Are Central Bankers Inflation Nutters? An MCMC Estimator of the Long-Memory Parameter in a State Space Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 529-549, February.
    3. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    4. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    5. Maggie E. C. Jones & Morten Ørregaard Nielsen & Michał Ksawery Popiel, 2014. "A fractionally cointegrated VAR analysis of economic voting and political support," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(4), pages 1078-1130, November.
    6. Dolado Juan J. & Gonzalo Jesus & Mayoral Laura, 2008. "Wald Tests of I(1) against I(d) Alternatives: Some New Properties and an Extension to Processes with Trending Components," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(4), pages 1-35, December.
    7. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    8. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    9. Ossama Mikhail & Curtis J. Eberwein & Jagdish Handa, 2003. "Testing and Estimating Persistence in Canadian Unemployment," Econometrics 0311004, University Library of Munich, Germany.
    10. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    11. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    12. Diebold, F.X. & Kilian, L. & Nerlove, Marc, 2006. "Time Series Analysis," Working Papers 28556, University of Maryland, Department of Agricultural and Resource Economics.
    13. Dissanayake, G.S. & Peiris, M.S. & Proietti, T., 2016. "State space modeling of Gegenbauer processes with long memory," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 115-130.
    14. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2015. "Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach," CREATES Research Papers 2015-30, Department of Economics and Business Economics, Aarhus University.
    15. G. Mesters & S. J. Koopman & M. Ooms, 2016. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
    16. O. Mikhail & C. J. Eberwein & J. Handa, 2006. "Estimating persistence in Canadian unemployment: evidence from a Bayesian ARFIMA," Applied Economics, Taylor & Francis Journals, vol. 38(15), pages 1809-1819.
    17. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    18. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    19. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    20. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.

    More about this item

    Keywords

    fractional integration; inflation-targeting; state space model;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2013_038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iker Arregui Alegria (email available below). General contact details of provider: https://edirc.repec.org/data/delunse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.