IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v55y2020i2d10.1007_s10614-019-09900-3.html
   My bibliography  Save this article

Are Central Bankers Inflation Nutters? An MCMC Estimator of the Long-Memory Parameter in a State Space Model

Author

Listed:
  • Fredrik N. G. Andersson

    (Lund University)

  • Yushu Li

    (University of Bergen)

Abstract

Inflation targeting is a common monetary policy regime. Inflation targets are often flexible in the sense that the central bank allows inflation to temporarily deviate from the target to avoid causing unnecessary volatility in the real economy. In this paper, we propose modeling the degree of flexibility using an autoregressive fractionally integrated moving average (ARFIMA) model. Assuming that the central bank controls the long-run inflation rate, the fractional integration order becomes a measure of how flexible the inflation target is. A higher integration order implies that inflation deviates from the target for longer periods of time and consequently, that the target is flexible. Several estimators of the fractional integration order have been proposed in the literature. Grassi and Magistris (2014) show that a state-based maximum likelihood estimator is superior to other estimators, but our simulations show that their finding is over-biased for a nearly non-stationary time series. To resolve this issue, we first proposed a Bayesian Monte Carlo Markov Chain (MCMC) estimator for fractional integration parameters. This estimator resolves the problem of over-bias. We estimate the fractional integration order for 6 countries for the period 1993M1 to 2017M9. We found that inflation was integrated to an order of 0.8 to 0.9 indicating that the inflation targets are implemented with a high degree of flexibility.

Suggested Citation

  • Fredrik N. G. Andersson & Yushu Li, 2020. "Are Central Bankers Inflation Nutters? An MCMC Estimator of the Long-Memory Parameter in a State Space Model," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 529-549, February.
  • Handle: RePEc:kap:compec:v:55:y:2020:i:2:d:10.1007_s10614-019-09900-3
    DOI: 10.1007/s10614-019-09900-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-019-09900-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-019-09900-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Svensson, Lars E. O., 1997. "Inflation forecast targeting: Implementing and monitoring inflation targets," European Economic Review, Elsevier, vol. 41(6), pages 1111-1146, June.
    2. David E. Lindsey & Athanasios Orphanides & Robert H. Rasche, 2013. "The Reform of October 1979: How It Happened and Why," Review, Federal Reserve Bank of St. Louis, issue Nov, pages 487-542.
    3. Svensson, Lars E. O., 1999. "Inflation targeting as a monetary policy rule," Journal of Monetary Economics, Elsevier, vol. 43(3), pages 607-654, June.
    4. Alan S. Blinder & Michael Ehrmann & Marcel Fratzscher & Jakob De Haan & David-Jan Jansen, 2008. "Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 910-945, December.
    5. Caggiano, Giovanni & Castelnuovo, Efrem, 2011. "On the dynamics of international inflation," Economics Letters, Elsevier, vol. 112(2), pages 189-191, August.
    6. Paresh Kumar Narayan & Seema Narayan, 2010. "Is there a unit root in the inflation rate? New evidence from panel data models with multiple structural breaks," Applied Economics, Taylor & Francis Journals, vol. 42(13), pages 1661-1670.
    7. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long‐Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
    8. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    9. Gill Hammond, 2012. "State of the art of inflation targeting," Handbooks, Centre for Central Banking Studies, Bank of England, edition 4, number 29, April.
    10. Alan S. Blinder & Michael Ehrmann & Marcel Fratzscher & Jakob De Haan & David-Jan Jansen, 2008. "Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 910-945, December.
    11. Andersson, Fredrik N. G. & Jonung, Lars, 2017. "How Tolerant Should Inflation-Targeting Central Banks Be? Selecting the Proper Tolerance Band - Lessons from Sweden," Working Papers 2017:2, Lund University, Department of Economics.
    12. repec:pri:cepsud:161blinder is not listed on IDEAS
    13. Coleman, Simeon & Sirichand, Kavita, 2012. "Fractional integration and the volatility of UK interest rates," Economics Letters, Elsevier, vol. 116(3), pages 381-384.
    14. Clarida, Richard & Gali, Jordi & Gertler, Mark, 1998. "Monetary policy rules in practice Some international evidence," European Economic Review, Elsevier, vol. 42(6), pages 1033-1067, June.
    15. Tkacz Greg, 2001. "Estimating the Fractional Order of Integration of Interest Rates Using a Wavelet OLS Estimator," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-15, April.
    16. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    17. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    18. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    19. Fredrik Andersson, 2014. "Exchange rates dynamics revisited: a panel data test of the fractional integration order," Empirical Economics, Springer, vol. 47(2), pages 389-409, September.
    20. Gerberding, Christina & Worms, Andreas & Seitz, Franz, 2004. "How the Bundesbank really conducted monetary policy: An analysis based on real-time data," Discussion Paper Series 1: Economic Studies 2004,25, Deutsche Bundesbank.
    21. Goodhart, C. A. E., 2011. "The changing role of central banks," Financial History Review, Cambridge University Press, vol. 18(2), pages 135-154, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersson, Fredrik N. G. & Li, Yushu, 2014. "Are Central Bankers Inflation Nutters? - A Bayesian MCMC Estimator of the Long Memory Parameter in a State Space Model," Discussion Papers 2014/38, Norwegian School of Economics, Department of Business and Management Science.
    2. Andersson, Fredrik N.G. & Li, Yushu, 2013. "How Flexible are the Inflation Targets? A Bayesian MCMC Estimator of the Long Memory Parameter in a State Space Model," Working Papers 2013:38, Lund University, Department of Economics.
    3. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
    4. Man-Keung Tang & Mr. Xiangrong Yu, 2011. "Communication of Central Bank Thinking and Inflation Dynamics," IMF Working Papers 2011/209, International Monetary Fund.
    5. Arina Wischnewsky & David‐Jan Jansen & Matthias Neuenkirch, 2021. "Financial stability and the Fed: Evidence from congressional hearings," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 1192-1214, July.
    6. Federico M. Giesenow & Jakob de Haan, 2019. "The influence of government ideology on monetary policy: New cross‐country evidence based on dynamic heterogeneous panels," Economics and Politics, Wiley Blackwell, vol. 31(2), pages 216-239, July.
    7. Ehrmann, Michael, 2021. "Point targets, tolerance bands or target ranges? Inflation target types and the anchoring of inflation expectations," Journal of International Economics, Elsevier, vol. 132(C).
    8. Vides, José Carlos & Golpe, Antonio A. & Iglesias, Jesús, 2020. "The EHTS and the persistence in the spread reconsidered. A fractional cointegration approach," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 124-137.
    9. Arnold Segawa, 2021. "Sentimental Outlook for the Monetary Policies of South African Reserve Bank," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 10(3), pages 37-56, July.
    10. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    11. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    12. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    13. Svensson, Lars E. O., 1999. "Inflation targeting as a monetary policy rule," Journal of Monetary Economics, Elsevier, vol. 43(3), pages 607-654, June.
    14. Glenn Rudebusch & Lars E.O. Svensson, 1999. "Policy Rules for Inflation Targeting," NBER Chapters, in: Monetary Policy Rules, pages 203-262, National Bureau of Economic Research, Inc.
    15. Petreski, Marjan, 2013. "Inflation targeting at the crossroads: Evidence from post-communist economies during the crisis," MPRA Paper 47018, University Library of Munich, Germany.
    16. Sylvia Staudinger, 2000. "Inflation Targeting versus Nominal Income Targeting," CESifo Working Paper Series 301, CESifo.
    17. Sandra Schmidt & Dieter Nautz, 2012. "Central Bank Communication and the Perception of Monetary Policy by Financial Market Experts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44, pages 323-340, March.
    18. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    19. Lars E. O. Svensson & Michael Woodford, 2004. "Implementing Optimal Policy through Inflation-Forecast Targeting," NBER Chapters, in: The Inflation-Targeting Debate, National Bureau of Economic Research, Inc.
    20. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:2:d:10.1007_s10614-019-09900-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.