IDEAS home Printed from https://ideas.repec.org/p/hhs/cbsnow/2022_013.html
   My bibliography  Save this paper

Electrolysis as a Flexibility Resource on Energy Islands: The Case of the North Sea

Author

Listed:

Abstract

Energy islands are meant to facilitate offshore sector integration by combining offshore wind energy with power-to-x technologies and storage. In this study, we investigate the operation of electrolysers on energy islands: We assess the potential flexibility contribution of the elec-trolyser and then analyse different market integration strategies of the islands. We develop a two-stage stochastic optimisation model to find the cost-efficient dispatch for an integrated day-ahead and balancing electricity market. For the market integration of the energy island we align our approach to the current debate and compare the case of a single offshore bidding zone to a case where the energy island is integrated into a home market zone. We find that electrolysers on energy islands will run at low capacity factors and provide flexibility in 26–30 % of their run time. In addition, offshore electrolysers produce more hydrogen when they are allocated to an offshore bidding zone, and thus earn higher profits. We conclude that combining offshore wind with electrolysers on an energy island relies on additional economic incentives if their main role is envisioned to be the delivery of balancing flexibility.

Suggested Citation

  • Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2022. "Electrolysis as a Flexibility Resource on Energy Islands: The Case of the North Sea," Working Papers 13-2022, Copenhagen Business School, Department of Economics.
  • Handle: RePEc:hhs:cbsnow:2022_013
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/10398/1973da63-75ba-4a5b-892d-984bd072dc79
    File Function: Full text
    Download Restriction: Full text not avaiable
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:aen:journl:eeep4_1_meeus is not listed on IDEAS
    2. Juan Gea-Bermúdez & Lena Kitzing & Matti Koivisto & Kaushik Das & Juan Pablo Murcia León & Poul Sørensen, 2022. "The Value of Sector Coupling for the Development of Offshore Power Grids," Energies, MDPI, vol. 15(3), pages 1-21, January.
    3. Kaldellis, J.K. & Apostolou, D. & Kapsali, M. & Kondili, E., 2016. "Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 92(C), pages 543-556.
    4. Sunila, Kanerva & Bergaentzlé, Claire & Martin, Bénédicte & Ekroos, Ari, 2019. "A supra-national TSO to enhance offshore wind power development in the Baltic Sea? A legal and regulatory analysis," Energy Policy, Elsevier, vol. 128(C), pages 775-782.
    5. Li, Xinyu & Mulder, Machiel, 2021. "Value of power-to-gas as a flexibility option in integrated electricity and hydrogen markets," Applied Energy, Elsevier, vol. 304(C).
    6. Flamm, Benjamin & Peter, Christian & Büchi, Felix N. & Lygeros, John, 2021. "Electrolyzer modeling and real-time control for optimized production of hydrogen gas," Applied Energy, Elsevier, vol. 281(C).
    7. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    8. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    9. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    10. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    11. Egerer, Jonas & Kunz, Friedrich & Hirschhausen, Christian von, 2013. "Development scenarios for the North and Baltic Seas Grid – A welfare economic analysis," Utilities Policy, Elsevier, vol. 27(C), pages 123-134.
    12. Leonardo Meeus, 2015. "Offshore grids for renewables: do we need a particular regulatory framework?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    13. Tosatto, Andrea & Beseler, Xavier Martínez & Østergaard, Jacob & Pinson, Pierre & Chatzivasileiadis, Spyros, 2022. "North Sea Energy Islands: Impact on national markets and grids," Energy Policy, Elsevier, vol. 167(C).
    14. Grueger, Fabian & Möhrke, Fabian & Robinius, Martin & Stolten, Detlef, 2017. "Early power to gas applications: Reducing wind farm forecast errors and providing secondary control reserve," Applied Energy, Elsevier, vol. 192(C), pages 551-562.
    15. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    16. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, January.
    17. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, January.
    18. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kountouris, Ioannis & Langer, Lissy & Bramstoft, Rasmus & Münster, Marie & Keles, Dogan, 2023. "Power-to-X in energy hubs: A Danish case study of renewable fuel production," Energy Policy, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2024. "Electrolysis as a flexibility resource on energy islands: The case of the North Sea," Energy Policy, Elsevier, vol. 185(C).
    2. Lüth, Alexandra & Keles, Dogan, 2024. "Risks, strategies, and benefits of offshore energy hubs: A literature-based survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    3. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    4. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    5. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    6. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    7. Moradpoor, Iraj & Syri, Sanna & Santasalo-Aarnio, Annukka, 2023. "Green hydrogen production for oil refining – Finnish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    9. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    11. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    12. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    13. Fabian Stöckl & Alexander Zerrahn, 2023. "Substituting Clean for Dirty Energy: A Bottom-Up Analysis," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 819-863.
    14. Mads Raunbak & Timo Zeyer & Kun Zhu & Martin Greiner, 2017. "Principal Mismatch Patterns Across a Simplified Highly Renewable European Electricity Network," Energies, MDPI, vol. 10(12), pages 1-13, November.
    15. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    16. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    17. Behrang Shirizadeh, 2020. "Carbon-neutral future with sector-coupling; relative role of different mitigation options in energy sector," Working Papers 2020.19, FAERE - French Association of Environmental and Resource Economists.
    18. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    19. Drücke, Jaqueline & Borsche, Michael & James, Paul & Kaspar, Frank & Pfeifroth, Uwe & Ahrens, Bodo & Trentmann, Jörg, 2021. "Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification," Renewable Energy, Elsevier, vol. 164(C), pages 1254-1266.
    20. Gunther Glenk & Rebecca Meier & Stefan Reichelstein, 2021. "Cost Dynamics of Clean Energy Technologies," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 179-206, June.

    More about this item

    Keywords

    Energy islands; Offshore energy hub; Flexibility resources; Bidding zones; Hydrogen;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:cbsnow:2022_013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CBS Library Research Registration Team (email available below). General contact details of provider: https://edirc.repec.org/data/incbsdk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.