IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v281y2021ics0306261920314690.html
   My bibliography  Save this article

Electrolyzer modeling and real-time control for optimized production of hydrogen gas

Author

Listed:
  • Flamm, Benjamin
  • Peter, Christian
  • Büchi, Felix N.
  • Lygeros, John

Abstract

We present a method that operates an electrolyzer to meet the demand of a hydrogen refueling station in a cost-effective manner by solving a model-based optimal control problem. To formulate the underlying problem, we first conduct an experimental characterization of a Siemens SILYZER 100 polymer electrolyte membrane electrolyzer with 100 kW of rated power. We run experiments to determine the electrolyzer’s conversion efficiency and thermal dynamics as well as the overload-limiting algorithm used in the electrolyzer. The resulting detailed nonlinear models are used to design a real-time optimal controller, which is then implemented on the actual system. Each minute, the controller solves a deterministic, receding-horizon problem which seeks to minimize the cost of satisfying a given hydrogen demand, while using a storage tank to take advantage of time-varying electricity prices and photovoltaic inflow. We illustrate in simulation the significant cost reduction achieved by our method compared to others in the literature, and then validate our method by demonstrating it in real-time operation on the actual system.

Suggested Citation

  • Flamm, Benjamin & Peter, Christian & Büchi, Felix N. & Lygeros, John, 2021. "Electrolyzer modeling and real-time control for optimized production of hydrogen gas," Applied Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314690
    DOI: 10.1016/j.apenergy.2020.116031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920314690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harris, Chioke B. & Webber, Michael E., 2014. "An empirically-validated methodology to simulate electricity demand for electric vehicle charging," Applied Energy, Elsevier, vol. 126(C), pages 172-181.
    2. Fischer, David & Kaufmann, Florian & Hollinger, Raphael & Voglstätter, Christopher, 2018. "Real live demonstration of MPC for a power-to-gas plant," Applied Energy, Elsevier, vol. 228(C), pages 833-842.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent Henkel & Lukas Peter Wagner & Maximilian Kilthau & Felix Gehlhoff & Alexander Fay, 2024. "A Multi-Agent Approach for the Optimized Operation of Modular Electrolysis Plants," Energies, MDPI, vol. 17(14), pages 1-33, July.
    2. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2024. "Electrolysis as a flexibility resource on energy islands: The case of the North Sea," Energy Policy, Elsevier, vol. 185(C).
    3. Kalantari, Hosein & Sasmito, Agus P. & Ghoreishi-Madiseh, Seyed Ali, 2021. "An overview of directions for decarbonization of energy systems in cold climate remote mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    5. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2022. "Electrolysis as a Flexibility Resource on Energy Islands: The Case of the North Sea," Working Papers 13-2022, Copenhagen Business School, Department of Economics.
    6. Abulanwar, Sayed & Ghanem, Abdelhady & Rizk, Mohammad E.M. & Hu, Weihao, 2021. "Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies," Applied Energy, Elsevier, vol. 304(C).
    7. Qiu, Yiwei & Zhou, Buxiang & Zang, Tianlei & Zhou, Yi & Chen, Shi & Qi, Ruomei & Li, Jiarong & Lin, Jin, 2023. "Extended load flexibility of utility-scale P2H plants: Optimal production scheduling considering dynamic thermal and HTO impurity effects," Renewable Energy, Elsevier, vol. 217(C).
    8. Zehra, Syeda Shafia & Ur Rahman, Aqeel & Ahmad, Iftikhar, 2022. "Fuzzy-barrier sliding mode control of electric-hydrogen hybrid energy storage system in DC microgrid: Modelling, management and experimental investigation," Energy, Elsevier, vol. 239(PD).
    9. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    10. Vincent Henkel & Lukas Peter Wagner & Felix Gehlhoff & Alexander Fay, 2024. "Combination of Site-Wide and Real-Time Optimization for the Control of Systems of Electrolyzers," Energies, MDPI, vol. 17(17), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    2. Varone, Alberto & Heilmann, Zeno & Porruvecchio, Guido & Romanino, Alessandro, 2024. "Solar parking lot management: An IoT platform for smart charging EV fleets, using real-time data and production forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    4. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    5. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    6. Su Su & Yong Hu & Tiantian Yang & Shidan Wang & Ziqi Liu & Xiangxiang Wei & Mingchao Xia & Yutaka Ota & Koji Yamashita, 2018. "Research on an Electric Vehicle Owner-Friendly Charging Strategy Using Photovoltaic Generation at Office Sites in Major Chinese Cities," Energies, MDPI, vol. 11(2), pages 1-19, February.
    7. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    8. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    9. Rhodes, Joshua D. & Cole, Wesley J. & Upshaw, Charles R. & Edgar, Thomas F. & Webber, Michael E., 2014. "Clustering analysis of residential electricity demand profiles," Applied Energy, Elsevier, vol. 135(C), pages 461-471.
    10. Signer, Tim & Baumgartner, Nora & Ruppert, Manuel & Sandmeier, Thorben & Fichtner, Wolf, 2024. "Modeling V2G spot market trading: The impact of charging tariffs on economic viability," Energy Policy, Elsevier, vol. 189(C).
    11. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    12. Hanemann, Philipp & Bruckner, Thomas, 2018. "Effects of electric vehicles on the spot market price," Energy, Elsevier, vol. 162(C), pages 255-266.
    13. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    14. C. Birk Jones & Matthew Lave & William Vining & Brooke Marshall Garcia, 2021. "Uncontrolled Electric Vehicle Charging Impacts on Distribution Electric Power Systems with Primarily Residential, Commercial or Industrial Loads," Energies, MDPI, vol. 14(6), pages 1-16, March.
    15. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    16. Fischer, David & Harbrecht, Alexander & Surmann, Arne & McKenna, Russell, 2019. "Electric vehicles’ impacts on residential electric local profiles – A stochastic modelling approach considering socio-economic, behavioural and spatial factors," Applied Energy, Elsevier, vol. 233, pages 644-658.
    17. Dongnyok Shim & Seung Wan Kim & Jörn Altmann & Yong Tae Yoon & Jin Gyo Kim, 2018. "Key Features of Electric Vehicle Diffusion and Its Impact on the Korean Power Market," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    18. Mangipinto, Andrea & Lombardi, Francesco & Sanvito, Francesco Davide & Pavičević, Matija & Quoilin, Sylvain & Colombo, Emanuela, 2022. "Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries," Applied Energy, Elsevier, vol. 312(C).
    19. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    20. Neil Stephen Lopez & Adrian Allana & Jose Bienvenido Manuel Biona, 2021. "Modeling Electric Vehicle Charging Demand with the Effect of Increasing EVSEs: A Discrete Event Simulation-Based Model," Energies, MDPI, vol. 14(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920314690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.