IDEAS home Printed from https://ideas.repec.org/p/has/discpr/1306.html
   My bibliography  Save this paper

College admissions with stable score-limits

Author

Listed:
  • Peter Biro

    (Institute of Economics Research Centre for Economic and Regional Studies Hungarian Academy of Sciences)

  • Sofya Kiselgof

    (Postgraduate Student, Lecturer Laboratory of Decision Choice and Analysis (DecAn), NRU Higher School of Economics, Moscow, Russia)

Abstract

A common feature of the Hungarian, Irish, Spanish and Turkish higher education admission systems is that the students apply for programmes and they are ranked according to their scores. Students who apply for a programme with the same score are in a tie. Ties are broken by lottery in Ireland, by objective factors in Turkey (such as date of birth) and other precisely defined rules in Spain. In Hungary, however, an equal treatment policy is used, students applying for a programme with the same score are all accepted or rejected together. In such a situation there is only one question to decide, whether or not to admit the last group of applicants with the same score who are at the boundary of the quota. Both concepts can be described in terms of stable score-limits. The strict rejection of the last group with whom a quota would be violated corresponds to the concept of H-stable (i.e. higher-stable) score-limits that is currently used in Hungary. We call the other solutions based on the less strict admission policy as L-stable (i.e. lower-stable) score-limits. We show that the natural extensions of the Gale-Shapley algorithms produce stable score-limits, moreover, the applicant-oriented versions result in the lowest score-limits (thus optimal for students) and the college-oriented versions result in the highest score-limits with regard to each concept. When comparing the applicant-optimal H-stable and L-stable score-limits we prove that the former limits are always higher for every college. Furthermore, these two solutions provide upper and lower bounds for any solution arising from a tie-breaking strategy. Finally we show that both the H-stable and the L-stable applicant-proposing score-limit algorithms are manipulable.

Suggested Citation

  • Peter Biro & Sofya Kiselgof, 2013. "College admissions with stable score-limits," CERS-IE WORKING PAPERS 1306, Institute of Economics, Centre for Economic and Regional Studies.
  • Handle: RePEc:has:discpr:1306
    as

    Download full text from publisher

    File URL: http://econ.core.hu/file/download/mtdp/MTDP1306.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    • Péter Biró & Sofya Kiselgof, 2015. "College admissions with stable score-limits," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(4), pages 727-741, December.

    References listed on IDEAS

    as
    1. Atila Abdulkadiroğlu & Parag A. Pathak & Alvin E. Roth, 2005. "The New York City High School Match," American Economic Review, American Economic Association, vol. 95(2), pages 364-367, May.
    2. Braun Sebastian & Dwenger Nadja & Kübler Dorothea, 2010. "Telling the Truth May Not Pay Off: An Empirical Study of Centralized University Admissions in Germany," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-38, March.
    3. Caterina Calsamiglia & Guillaume Haeringer & Flip Klijn, 2010. "Constrained School Choice: An Experimental Study," American Economic Review, American Economic Association, vol. 100(4), pages 1860-1874, September.
    4. Charles Blair, 1988. "The Lattice Structure of the Set of Stable Matchings with Multiple Partners," Mathematics of Operations Research, INFORMS, vol. 13(4), pages 619-628, November.
    5. Atila Abdulkadiroglu & Parag A. Pathak & Alvin E. Roth, 2009. "Strategy-proofness versus Efficiency in Matching with Indifferences: Redesigning the New York City High School Match," NBER Working Papers 14864, National Bureau of Economic Research, Inc.
    6. Aytek Erdil & Haluk Ergin, 2008. "What's the Matter with Tie-Breaking? Improving Efficiency in School Choice," American Economic Review, American Economic Association, vol. 98(3), pages 669-689, June.
    7. Atila Abdulkadiroğlu & Parag A. Pathak & Alvin E. Roth & Tayfun Sönmez, 2005. "The Boston Public School Match," American Economic Review, American Economic Association, vol. 95(2), pages 368-371, May.
    8. Fuhito Kojima & Parag A. Pathak, 2009. "Incentives and Stability in Large Two-Sided Matching Markets," American Economic Review, American Economic Association, vol. 99(3), pages 608-627, June.
    9. John William Hatfield & Paul R. Milgrom, 2005. "Matching with Contracts," American Economic Review, American Economic Association, vol. 95(4), pages 913-935, September.
    10. Westkamp, Alexander, 2012. "An analysis of the German university admissions system," Bonn Econ Discussion Papers 02/2012, University of Bonn, Bonn Graduate School of Economics (BGSE).
    11. Antonio Romero-Medina, 1998. "Implementation of stable solutions in a restricted matching market," Review of Economic Design, Springer;Society for Economic Design, vol. 3(2), pages 137-147.
    12. Péter Biró & Flip Klijn, 2013. "Matching With Couples: A Multidisciplinary Survey," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-18.
    13. Roth, Alvin E, 1984. "Stability and Polarization of Interests in Job Matching," Econometrica, Econometric Society, vol. 52(1), pages 47-57, January.
    14. Sebastian Braun & Nadja Dwenger & Dorothea Kübler, 2007. "Telling the Truth May Not Pay Off," Discussion Papers of DIW Berlin 759, DIW Berlin, German Institute for Economic Research.
    15. Roth, Alvin E, 1984. "The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 991-1016, December.
    16. Atila Abdulkadiroglu & Parag A. Pathak & Alvin E. Roth, 2009. "Strategy-Proofness versus Efficiency in Matching with Indifferences: Redesigning the NYC High School Match," American Economic Review, American Economic Association, vol. 99(5), pages 1954-1978, December.
    17. Chung-Piaw Teo & Jay Sethuraman & Wee-Peng Tan, 2001. "Gale-Shapley Stable Marriage Problem Revisited: Strategic Issues and Applications," Management Science, INFORMS, vol. 47(9), pages 1252-1267, September.
    18. Kelso, Alexander S, Jr & Crawford, Vincent P, 1982. "Job Matching, Coalition Formation, and Gross Substitutes," Econometrica, Econometric Society, vol. 50(6), pages 1483-1504, November.
    19. Balinski, Michel & Sonmez, Tayfun, 1999. "A Tale of Two Mechanisms: Student Placement," Journal of Economic Theory, Elsevier, vol. 84(1), pages 73-94, January.
    20. Elliott Peranson & Alvin E. Roth, 1999. "The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design," American Economic Review, American Economic Association, vol. 89(4), pages 748-780, September.
    21. Alvin E. Roth, 1982. "The Economics of Matching: Stability and Incentives," Mathematics of Operations Research, INFORMS, vol. 7(4), pages 617-628, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolos Csaba Ágoston & Péter Biró & Iain McBride, 2016. "Integer programming methods for special college admissions problems," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1371-1399, November.
    2. L'aszl'o Csat'o & Csaba T'oth, 2018. "University rankings from the revealed preferences of the applicants," Papers 1810.04087, arXiv.org, revised Feb 2020.
    3. Agnes Cseh & Klaus Heeger, 2020. "The stable marriage problem with ties and restricted edges," CERS-IE WORKING PAPERS 2007, Institute of Economics, Centre for Economic and Regional Studies.
    4. Ágoston, Kolos Csaba & Biró, Péter & Kováts, Endre & Jankó, Zsuzsanna, 2022. "College admissions with ties and common quotas: Integer programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 722-734.
    5. Peter Biro & Tamas Fleiner & Rob Irving, 2013. "Matching Couples with Scarf's Algorithm," CERS-IE WORKING PAPERS 1330, Institute of Economics, Centre for Economic and Regional Studies.
    6. Agnes Cseh & Klaus Heeger, 2020. "The stable marriage problem with ties and restricted edges," IEHAS Discussion Papers 2007, Institute of Economics, Centre for Economic and Regional Studies.
    7. Agnes Cseh & Attila Juhos, 2020. "Pairwise preferences in the stable marriage problem," CERS-IE WORKING PAPERS 2006, Institute of Economics, Centre for Economic and Regional Studies.
    8. Adam Kapor & Mohit Karnani & Christopher Neilson, 2019. "Negative Externalities of Off Platform Options and the Efficiency of Centralized Assignment Mechanisms," Working Papers 635, Princeton University, Department of Economics, Industrial Relations Section..
    9. Peng Shi, 2022. "Optimal Priority-Based Allocation Mechanisms," Management Science, INFORMS, vol. 68(1), pages 171-188, January.
    10. Katarína Cechlárová & Tamás Fleiner & David Manlove & Iain McBride & Eva Potpinková, 2015. "Modelling practical placement of trainee teachers to schools," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(3), pages 547-562, September.
    11. Ferenc Forgó & László Kóczy & Miklós Pintér, 2015. "Editorial," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(4), pages 723-725, December.
    12. Surender Baswana & Partha Pratim Chakrabarti & Sharat Chandran & Yashodhan Kanoria & Utkarsh Patange, 2019. "Centralized Admissions for Engineering Colleges in India," Interfaces, INFORMS, vol. 49(5), pages 338-354, September.
    13. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kóczy Á., László, 2009. "Központi felvételi rendszerek. Taktikázás és stabilitás [Central admission systems. Stratagems and stability]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 422-442.
    2. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    3. Abdulkadiroglu, Atila & Andersson, Tommy, 2022. "School Choice," Working Papers 2022:4, Lund University, Department of Economics.
    4. Parag A. Pathak & Tayfun Sönmez, 2013. "School Admissions Reform in Chicago and England: Comparing Mechanisms by Their Vulnerability to Manipulation," American Economic Review, American Economic Association, vol. 103(1), pages 80-106, February.
    5. Hatfield, John William & Kojima, Fuhito & Narita, Yusuke, 2016. "Improving schools through school choice: A market design approach," Journal of Economic Theory, Elsevier, vol. 166(C), pages 186-211.
    6. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    7. Ehlers, Lars & Hafalir, Isa E. & Yenmez, M. Bumin & Yildirim, Muhammed A., 2014. "School choice with controlled choice constraints: Hard bounds versus soft bounds," Journal of Economic Theory, Elsevier, vol. 153(C), pages 648-683.
    8. Hatfield, John William & Kojima, Fuhito, 2010. "Substitutes and stability for matching with contracts," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1704-1723, September.
    9. Kojima, Fuhito, 2013. "Efficient resource allocation under multi-unit demand," Games and Economic Behavior, Elsevier, vol. 82(C), pages 1-14.
    10. Haeringer, Guillaume & Klijn, Flip, 2009. "Constrained school choice," Journal of Economic Theory, Elsevier, vol. 144(5), pages 1921-1947, September.
    11. Fuhito Kojima & Parag A. Pathak, 2009. "Incentives and Stability in Large Two-Sided Matching Markets," American Economic Review, American Economic Association, vol. 99(3), pages 608-627, June.
    12. Alexander Westkamp, 2013. "An analysis of the German university admissions system," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 53(3), pages 561-589, August.
    13. Committee, Nobel Prize, 2012. "Alvin E. Roth and Lloyd S. Shapley: Stable allocations and the practice of market design," Nobel Prize in Economics documents 2012-1, Nobel Prize Committee.
    14. Atila Abdulkadiroglu & Parag A. Pathak & Alvin E. Roth, 2009. "Strategy-Proofness versus Efficiency in Matching with Indifferences: Redesigning the NYC High School Match," American Economic Review, American Economic Association, vol. 99(5), pages 1954-1978, December.
    15. Dimakopoulos, Philipp D. & Heller, C.-Philipp, 2019. "Matching with waiting times: The German entry-level labor market for lawyers," Games and Economic Behavior, Elsevier, vol. 115(C), pages 289-313.
    16. Jagadeesan, Ravi & Kominers, Scott Duke & Rheingans-Yoo, Ross, 2018. "Strategy-proofness of worker-optimal matching with continuously transferable utility," Games and Economic Behavior, Elsevier, vol. 108(C), pages 287-294.
    17. James Boudreau & Vicki Knoblauch, 2013. "Preferences and the price of stability in matching markets," Theory and Decision, Springer, vol. 74(4), pages 565-589, April.
    18. Alvin E. Roth, 2010. "Marketplace Institutions Related to the Timing of Transactions," NBER Working Papers 16556, National Bureau of Economic Research, Inc.
    19. Umut M. Dur & Scott Duke Kominers & Parag A. Pathak & Tayfun Sönmez, 2013. "The Demise of Walk Zones in Boston: Priorities vs. Precedence in School Choice," NBER Working Papers 18981, National Bureau of Economic Research, Inc.
    20. Alvin E. Roth, 2009. "What Have We Learned from Market Design?," Innovation Policy and the Economy, University of Chicago Press, vol. 9(1), pages 79-112.

    More about this item

    Keywords

    college admissions; stable matching; mechanism design;
    All these keywords.

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • I21 - Health, Education, and Welfare - - Education - - - Analysis of Education

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:has:discpr:1306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nora Horvath (email available below). General contact details of provider: https://edirc.repec.org/data/iehashu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.