IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-03211698.html
   My bibliography  Save this paper

Approximate pricing formula to capture leverage effect and stochastic volatility of a financial asset

Author

Listed:
  • Youssef El-Khatib
  • Stéphane Goutte

    (VNU - Vietnam National University [Hanoï], Cemotev - Centre d'études sur la mondialisation, les conflits, les territoires et les vulnérabilités - UVSQ - Université de Versailles Saint-Quentin-en-Yvelines)

  • Zororo S Makumbe
  • Josep Vives

Abstract

In this paper a hybrid model is investigated to capture both financial behaviors of an asset: (i) the leverage effect and (ii) the stochastic volatility component. For this we consider a hybrid model that takes the strengths of the Heston and the CEV models. The pricing of European options is investigated both theoretically and empirically. A decomposition formula that allows to estimate the option price is obtained. Moreover, numerical simulations of the asset price are done to give a better and concrete vision of the adding of this approach. In addition, the price of a European call option under the hybrid model is computed using the Monte Carlo method and our formula. Illustrations and tables show the efficiency of the numerical method based on our approximate formula.

Suggested Citation

  • Youssef El-Khatib & Stéphane Goutte & Zororo S Makumbe & Josep Vives, 2021. "Approximate pricing formula to capture leverage effect and stochastic volatility of a financial asset," Working Papers halshs-03211698, HAL.
  • Handle: RePEc:hal:wpaper:halshs-03211698
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03211698
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-03211698/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raul Merino & Josep Vives, 2015. "About the decomposition of pricing formulas under stochastic volatility models," Papers 1503.08119, arXiv.org.
    2. Elisa Alòs & Rafael De Santiago & Josep Vives, 2015. "Calibration Of Stochastic Volatility Models Via Second-Order Approximation: The Heston Case," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1-31.
    3. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    4. Sun-Yong Choi & Jean-Pierre Fouque & Jeong-Hoon Kim, 2013. "Option pricing under hybrid stochastic and local volatility," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1157-1165, July.
    5. Raúl Merino & Josep Vives, 2017. "Option Price Decomposition in Spot-Dependent Volatility Models and Some Applications," International Journal of Stochastic Analysis, Hindawi, vol. 2017, pages 1-16, July.
    6. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Raúl Merino & Josep Vives, 2015. "A Generic Decomposition Formula for Pricing Vanilla Options under Stochastic Volatility Models," International Journal of Stochastic Analysis, Hindawi, vol. 2015, pages 1-11, June.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    2. Xu, Lei & Ma, Xueke & Qu, Fang & Wang, Li, 2023. "Risk connectedness between crude oil, gold and exchange rates in China: Implications of the COVID-19 pandemic," Resources Policy, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    2. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    3. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    4. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    5. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    6. Mascagni Michael & Hin Lin-Yee, 2013. "Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 77-105, July.
    7. Youssef El-Khatib & Zororo S. Makumbe & Josep Vives, 2024. "Approximate option pricing under a two-factor Heston–Kou stochastic volatility model," Computational Management Science, Springer, vol. 21(1), pages 1-28, June.
    8. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    9. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013, January-A.
    10. Bégin Jean-François & Bédard Mylène & Gaillardetz Patrice, 2015. "Simulating from the Heston model: A gamma approximation scheme," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 205-231, September.
    11. Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2022. "Market and model risks: a feasible joint estimate methodology," Risk Management, Palgrave Macmillan, vol. 24(3), pages 187-213, September.
    12. Takuji Arai, 2020. "Al\`os type decomposition formula for Barndorff-Nielsen and Shephard model," Papers 2005.07393, arXiv.org, revised Sep 2020.
    13. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    14. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    15. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    16. Shuang Xiao & Guo Li & Yunjing Jia, 2017. "Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-23, February.
    17. Lay Harold A. & Colgin Zane & Reshniak Viktor & Khaliq Abdul Q. M., 2018. "On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 309-321, December.
    18. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    19. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    20. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.

    More about this item

    Keywords

    Heston-CEV model; Stochastic volatility; European options; Monte Carlo method; Decomposition formula;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-03211698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.