IDEAS home Printed from https://ideas.repec.org/a/hin/jnijsa/103647.html
   My bibliography  Save this article

A Generic Decomposition Formula for Pricing Vanilla Options under Stochastic Volatility Models

Author

Listed:
  • Raúl Merino
  • Josep Vives

Abstract

We obtain a decomposition of the call option price for a very general stochastic volatility diffusion model, extending a previous decomposition formula for the Heston model. We realize that a new term arises when the stock price does not follow an exponential model. The techniques used for this purpose are nonanticipative. In particular, we also see that equivalent results can be obtained by using Functional Itô Calculus. Using the same generalizing ideas, we also extend to nonexponential models the alternative call option price decomposition formula written in terms of the Malliavin derivative of the volatility process. Finally, we give a general expression for the derivative of the implied volatility under both the anticipative and the nonanticipative cases.

Suggested Citation

  • Raúl Merino & Josep Vives, 2015. "A Generic Decomposition Formula for Pricing Vanilla Options under Stochastic Volatility Models," International Journal of Stochastic Analysis, Hindawi, vol. 2015, pages 1-11, June.
  • Handle: RePEc:hin:jnijsa:103647
    DOI: 10.1155/2015/103647
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJSA/2015/103647.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJSA/2015/103647.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/103647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2022. "Approximate pricing formula to capture leverage effect and stochastic volatility of a financial asset," Finance Research Letters, Elsevier, vol. 44(C).
    2. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    3. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    4. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    5. Takuji Arai, 2020. "Al\`os type decomposition formula for Barndorff-Nielsen and Shephard model," Papers 2005.07393, arXiv.org, revised Sep 2020.
    6. Youssef El-Khatib & Zororo S. Makumbe & Josep Vives, 2024. "Approximate option pricing under a two-factor Heston–Kou stochastic volatility model," Computational Management Science, Springer, vol. 21(1), pages 1-28, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijsa:103647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.