IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v18y2015i06ns0219024915500363.html
   My bibliography  Save this article

Calibration Of Stochastic Volatility Models Via Second-Order Approximation: The Heston Case

Author

Listed:
  • ELISA ALÒS

    (Departament d'Economia i Empresa, Universitat Pompeu Fabra and Barcelona Graduate School of Economics, c/Ramón Trias Fargas, 25–27, 08005 Barcelona, Spain)

  • RAFAEL DE SANTIAGO

    (Department of Managerial Decision Sciences, IESE Business School, Av. Pearson 21, 08034 Barcelona, Spain)

  • JOSEP VIVES

    (Departament de Probabilitat, Lògica i Estadística and Institut de Matemàtica de la Universitat de Barcelona (IMUB), Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain)

Abstract

In this paper, we present a new, simple and efficient calibration procedure that uses both the short and long-term behavior of the Heston model in a coherent fashion. Using a suitable Hull and White-type formula, we develop a methodology to obtain an approximation to the implied volatility. Using this approximation, we calibrate the full set of parameters of the Heston model. One of the reasons that makes our calibration for short times to maturity so accurate is that we take into account the term structure for large times to maturity: We may thus say that calibration is not "memoryless," in the sense that the option's behavior far away from maturity does influence calibration when the option gets close to expiration. Our results provide a way to perform a quick calibration of a closed-form approximation to vanilla option prices, which may then be used to price exotic derivatives. The methodology is simple, accurate, fast and it requires a minimal computational effort.

Suggested Citation

  • Elisa Alòs & Rafael De Santiago & Josep Vives, 2015. "Calibration Of Stochastic Volatility Models Via Second-Order Approximation: The Heston Case," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1-31.
  • Handle: RePEc:wsi:ijtafx:v:18:y:2015:i:06:n:s0219024915500363
    DOI: 10.1142/S0219024915500363
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024915500363
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024915500363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Janek, Agnieszka & Kluge, Tino & Weron, Rafał & Wystup, Uwe, 2010. "FX smile in the Heston model," SFB 649 Discussion Papers 2010-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Jim Gatheral & Antoine Jacquier, 2011. "Convergence of Heston to SVI," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1129-1132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takuji Arai, 2021. "Approximate option pricing formula for Barndorff-Nielsen and Shephard model," Papers 2104.10877, arXiv.org.
    2. Colin Turfus & Aurelio Romero-Berm'udez, 2023. "Analytic RFR Option Pricing with Smile and Skew," Papers 2301.01260, arXiv.org.
    3. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2022. "Approximate pricing formula to capture leverage effect and stochastic volatility of a financial asset," Finance Research Letters, Elsevier, vol. 44(C).
    4. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    5. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    6. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    7. Eudald Romo & Luis Ortiz-Gracia, 2021. "SWIFT calibration of the Heston model," Papers 2103.01570, arXiv.org.
    8. Takuji Arai, 2020. "Al\`os type decomposition formula for Barndorff-Nielsen and Shephard model," Papers 2005.07393, arXiv.org, revised Sep 2020.
    9. Youssef El-Khatib & Zororo S. Makumbe & Josep Vives, 2024. "Approximate option pricing under a two-factor Heston–Kou stochastic volatility model," Computational Management Science, Springer, vol. 21(1), pages 1-28, June.
    10. Siow Woon Jeng & Adem Kiliçman, 2021. "SPX Calibration of Option Approximations under Rough Heston Model," Mathematics, MDPI, vol. 9(21), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Papers 2207.02989, arXiv.org.
    2. repec:hal:wpaper:hal-03715921 is not listed on IDEAS
    3. Antoine Jacquier & Aleksandar Mijatović, 2014. "Large Deviations for the Extended Heston Model: The Large-Time Case," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(3), pages 263-280, September.
    4. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    5. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2023. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Post-Print hal-03715921, HAL.
    6. Elisa Alòs & Rafael De Santiago & Josep Vives, 2012. "Calibration of stochastic volatility models via second order approximation: the Heston model case," Economics Working Papers 1346, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    8. Cui, Yiran & del Baño Rollin, Sebastian & Germano, Guido, 2017. "Full and fast calibration of the Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 263(2), pages 625-638.
    9. Archil Gulisashvili & Peter Laurence, 2013. "The Heston Riemannian distance function," Papers 1302.2337, arXiv.org.
    10. repec:hum:wpaper:sfb649dp2010-061 is not listed on IDEAS
    11. repec:hum:wpaper:sfb649dp2010-059 is not listed on IDEAS
    12. Tsekrekos, Andrianos E. & Yannacopoulos, Athanasios N., 2016. "Optimal switching decisions under stochastic volatility with fast mean reversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 148-157.
    13. Cao, Jiling & Kim, Jeong-Hoon & Liu, Wenqiang & Zhang, Wenjun, 2023. "Rescaling the double-mean-reverting 4/2 stochastic volatility model for derivative pricing," Finance Research Letters, Elsevier, vol. 58(PB).
    14. Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
    15. Matthew Lorig & Stefano Pagliarani & Andrea Pascucci, 2017. "Explicit Implied Volatilities For Multifactor Local-Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 27(3), pages 926-960, July.
    16. Eudald Romo & Luis Ortiz-Gracia, 2021. "SWIFT calibration of the Heston model," Papers 2103.01570, arXiv.org.
    17. Jaegi Jeon & Geonwoo Kim & Jeonggyu Huh, 2019. "Consistent and Efficient Pricing of SPX and VIX Options under Multiscale Stochastic Volatility," Papers 1909.10187, arXiv.org.
    18. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2016. "Hedging under an expected loss constraint with small transaction costs," Post-Print hal-00863562, HAL.
    19. Cao, Jiling & Kim, Jeong-Hoon & Li, Xi & Zhang, Wenjun, 2023. "Valuation of barrier and lookback options under hybrid CEV and stochastic volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 660-676.
    20. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    21. repec:hum:wpaper:sfb649dp2010-055 is not listed on IDEAS
    22. Maxim Bichuch & Jean-Pierre Fouque, 2019. "Optimal Investment with Correlated Stochastic Volatility Factors," Papers 1908.07626, arXiv.org, revised Nov 2022.
    23. David Berger & Ian Dew-Becker & Stefano Giglio, 2020. "Uncertainty Shocks as Second-Moment News Shocks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(1), pages 40-76.
    24. J.-P. Fouque & Y. F. Saporito, 2018. "Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 1003-1016, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:18:y:2015:i:06:n:s0219024915500363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.