IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04140945.html
   My bibliography  Save this paper

Small, alone and poor: a merciless portrait of insolvent French firms, 2007-2010

Author

Listed:
  • Nadine Levratto

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Luc Tessier
  • Messaoud Zouikri

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

This empirical paper investigates the path to bankruptcy for a sample of French firms in default, in particular the decision to file a petition for bankruptcy, the arbitrage between rescuing and liquidation and the effective survival. The procedure is depicted as a sequence of three steps in which judges play a crucial role as they decide whether a company is insolvent or not and determine whether an insolvent company deserves to be rescued or, on the contrary, should be liquidated, the market having the last word since the effective success depends on the capability of the firm to recover from the judicial proceedings. We test different hypotheses about the variables influencing each possibility which include i) the role of the market in the firm's health, ii) the influence of financial structures, iii) the importance of corporate governance and iv) the inherent corporate factors of probable survival. Using three linked LOGIT models, our first finding is that the probability to default depends mainly on the market. Secondly the probability to be rescued depends essentially on the financial structure. Finally, the probability for the firm to remain in business in the long term is largely influenced by the market and profitability. Our results also support the idea that governance, size and resources are the main determinants of exit from the market or success of any company.

Suggested Citation

  • Nadine Levratto & Luc Tessier & Messaoud Zouikri, 2011. "Small, alone and poor: a merciless portrait of insolvent French firms, 2007-2010," Working Papers hal-04140945, HAL.
  • Handle: RePEc:hal:wpaper:hal-04140945
    Note: View the original document on HAL open archive server: https://hal.science/hal-04140945
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04140945/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stewart C. Myers & Nicholas S. Majluf, 1984. "Corporate Financing and Investment Decisions When Firms Have InformationThat Investors Do Not Have," NBER Working Papers 1396, National Bureau of Economic Research, Inc.
    2. Myers, Stewart C. & Majluf, Nicholas S., 1984. "Corporate financing and investment decisions when firms have information that investors do not have," Journal of Financial Economics, Elsevier, vol. 13(2), pages 187-221, June.
    3. Casey, C & Bartczak, N, 1985. "Using Operating Cash Flow Data To Predict Financial Distress - Some Extensions," Journal of Accounting Research, Wiley Blackwell, vol. 23(1), pages 384-401.
    4. Stijn Claessens & Leora F. Klapper, 2005. "Bankruptcy around the World: Explanations of Its Relative Use," American Law and Economics Review, American Law and Economics Association, vol. 7(1), pages 253-283.
    5. John Armour, 2001. "The Law and Economics of Corporate Insolvency: A Review," Working Papers wp197, Centre for Business Research, University of Cambridge.
    6. Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Terry J. Ward & Benjamin P. Foster, 1997. "A Note on Selecting a Response Measure for Financial Distress," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 24(6), pages 869-879, July.
    9. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    10. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    11. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    12. Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
    13. Gentry, Ja & Newbold, P & Whitford, Dt, 1985. "Classifying Bankrupt Firms With Funds Flow Components," Journal of Accounting Research, Wiley Blackwell, vol. 23(1), pages 146-160.
    14. Peel, M. J. & Peel, D. A., 1988. "A multilogit approach to predicting corporate failure--Some evidence for the UK corporate sector," Omega, Elsevier, vol. 16(4), pages 309-318.
    15. Murugan Anandarajan & Picheng Lee & Asokan Anandarajan, 2001. "Bankruptcy prediction of financially stressed firms: an examination of the predictive accuracy of artificial neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(2), pages 69-81, June.
    16. Terry J. Ward & Benjamin P. Foster, 1997. "A Note on Selecting a Response Measure for Financial Distress," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 24(6), pages 869-879.
    17. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadine Levratto & Luc Tessier & Messaoud Zouikri, 2011. "Small, alone and poor: a merciless portrait of insolvent French firms, 2007-2010," EconomiX Working Papers 2011-36, University of Paris Nanterre, EconomiX.
    2. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    3. Jones, Stewart & Hensher, David A., 2007. "Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes," The British Accounting Review, Elsevier, vol. 39(1), pages 89-107.
    4. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    5. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    6. Aaro Hazak & Kadri Männasoo, 2007. "Indicators of corporate default : an EU based empirical study," Bank of Estonia Working Papers 2007-10, Bank of Estonia, revised 04 Sep 2007.
    7. Pindado, Julio & Rodrigues, Luis & de la Torre, Chabela, 2008. "Estimating financial distress likelihood," Journal of Business Research, Elsevier, vol. 61(9), pages 995-1003, September.
    8. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    9. Chyan-long Jan, 2018. "An Effective Financial Statements Fraud Detection Model for the Sustainable Development of Financial Markets: Evidence from Taiwan," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    10. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    11. McGurr, Paul T. & DeVaney, Sharon A., 1998. "Predicting Business Failure of Retail Firms: An Analysis Using Mixed Industry Models," Journal of Business Research, Elsevier, vol. 43(3), pages 169-176, November.
    12. Alexander Hölzl & Sebastian Lobe, 2016. "Predicting above-median and below-median growth rates," Review of Managerial Science, Springer, vol. 10(1), pages 105-133, January.
    13. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    14. David A. Hensher & Stewart Jones & William H. Greene, 2007. "An Error Component Logit Analysis of Corporate Bankruptcy and Insolvency Risk in Australia," The Economic Record, The Economic Society of Australia, vol. 83(260), pages 86-103, March.
    15. Paulo V. Carvalho & José D. Curto & Rodrigo Primor, 2022. "Macroeconomic determinants of credit risk: Evidence from the Eurozone," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2054-2072, April.
    16. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    17. Rassoul Yazdipour & Richard Constand, 2010. "Predicting Firm Failure: A Behavioral Finance Perspective," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 14(3), pages 90-104, Fall.
    18. Qiao, Lu & Fei, Junjun, 2022. "Government subsidies, enterprise operating efficiency, and “stiff but deathless” zombie firms," Economic Modelling, Elsevier, vol. 107(C).
    19. Cakir, Murat, 2005. "Firma Başarısızlığının Dinamiklerinin Belirlenmesinde Makina Öğrenmesi Teknikleri: Ampirik Uygulamalar ve Karşılaştırmalı Analiz [Machine Learning Techniques in Determining the Dynamics of Corporat," MPRA Paper 55975, University Library of Munich, Germany.
    20. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04140945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.