IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01678050.html
   My bibliography  Save this paper

Modeling Longevity Risk using Consistent Dynamics Affine Mortality Models

Author

Listed:
  • Rihab Bedoui

    (IHEC Sousse - IHEC)

  • Islem Kedidi

    (LAREMFIQ - Laboratory Research for Economy, Management and Quantitative Finance - Institut des Hautes Etudes Commerciales (Université de Sousse))

Abstract

Longevity Risk becomes an important challenge in the recent Year because of the decreases in the mortality rates and the rising in the life expectancy through the decades. In this article, we propose a consistent multi-factor dynamics affine mortality model to the longevity risk model-ing, we show that this model is an appropriate model to fit the historical mortality rates.To our Knowledge this is the first work that uses a consistent Mortality models to model USA Longevity risk.Indeed the multiple risk factors permitting applications not only to the hedge and price of the longevity risk but also in mortality derivatives and the general problems in the risk management .A state space presentation is used to estimate the model parameters through the kalman filter .To capture the effect of the size of the population sample we include a measurement error variance for each age. We evaluate 2-and 3-factor implementation of the model through the use of the USA mortality data, we employ Bootstrapping method to derive parameter estimated and the Consistent models prove the performance and the stability of the model. We show that the 3-factor independent model is the best model that can provide a better fit to our survivals curves and especially for the elderly persons

Suggested Citation

  • Rihab Bedoui & Islem Kedidi, 2018. "Modeling Longevity Risk using Consistent Dynamics Affine Mortality Models," Working Papers hal-01678050, HAL.
  • Handle: RePEc:hal:wpaper:hal-01678050
    Note: View the original document on HAL open archive server: https://hal.science/hal-01678050
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01678050/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Hua & Cummins, J. David, 2010. "Longevity bond premiums: The extreme value approach and risk cubic pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 150-161, February.
    2. Jens H. E. Christensen & Francis X. Diebold & Glenn D. Rudebusch, 2009. "An arbitrage-free generalized Nelson--Siegel term structure model," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 33-64, November.
    3. Babbs, Simon H. & Nowman, K. Ben, 1999. "Kalman Filtering of Generalized Vasicek Term Structure Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 115-130, March.
    4. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    5. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    6. Stéphane Loisel, 2007. "In the core of longevity risk: hidden dependence in stochastic mortality models and cut-offs in prices of longevity swaps," Post-Print hal-00397274, HAL.
    7. Carl Chiarella & Oh-Kang Kwon, 1999. "Classes of Interest Rate Models Under the HJM Framework," Research Paper Series 13, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    9. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    10. Barbarin, Jérôme, 2008. "Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 41-55, August.
    11. Philipp J. Schonbucher, 1997. "Team Structure Modelling of Defaultable Bonds," FMG Discussion Papers dp272, Financial Markets Group.
    12. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    13. Horneff, Wolfram J. & Maurer, Raimond H. & Mitchell, Olivia S. & Stamos, Michael Z., 2009. "Asset allocation and location over the life cycle with investment-linked survival-contingent payouts," Journal of Banking & Finance, Elsevier, vol. 33(9), pages 1688-1699, September.
    14. Blake, D. & Cairns, A. J. G. & Dowd, K., 2006. "Living with Mortality: Longevity Bonds and Other Mortality-Linked Securities," British Actuarial Journal, Cambridge University Press, vol. 12(1), pages 153-197, March.
    15. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    16. Elisa Luciano & Elena Vigna, 2005. "Non mean reverting affine processes for stochastic mortality," ICER Working Papers - Applied Mathematics Series 4-2005, ICER - International Centre for Economic Research.
    17. Coughlan, Guy & Khalaf-Allah, Marwa & Ye, Yijing & Kumar, Sumit & Cairns, Andrew & Blake, David & Dowd, Kevin, 2011. "Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness," MPRA Paper 35743, University Library of Munich, Germany.
    18. Lin, Tzuling & Tzeng, Larry Y., 2010. "An additive stochastic model of mortality rates: An application to longevity risk in reserve evaluation," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 423-435, April.
    19. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    20. Cairns, Andrew J.G., 2011. "Modelling and management of longevity risk: Approximations to survivor functions and dynamic hedging," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 438-453.
    21. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    22. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    23. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Longevity risk in portfolios of pension annuities," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 505-519, April.
    24. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    25. Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.
    26. De Rossi, Giuliano, 2004. "Kalman filtering of consistent forward rate curves: a tool to estimate and model dynamically the term structure," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 277-308, March.
    27. Kevin Dowd, 2003. "Survivor Bonds: A Comment on Blake and Burrows," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(2), pages 339-348, June.
    28. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    29. Guy Coughlan & Marwa Khalaf-Allah & Yijing Ye & Sumit Kumar & Andrew Cairns & David Blake & Kevin Dowd, 2011. "Longevity Hedging 101," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 150-176.
    30. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    31. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    32. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blackburn, Craig & Sherris, Michael, 2013. "Consistent dynamic affine mortality models for longevity risk applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 64-73.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. Georgina Onuma Kalu & Chinemerem Dennis Ikpe & Benjamin Ifeanyichukwu Oruh & Samuel Asante Gyamerah, 2020. "State Space Vasicek Model of a Longevity Bond," Papers 2011.12753, arXiv.org.
    5. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    6. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    7. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    8. Ziveyi, Jonathan & Blackburn, Craig & Sherris, Michael, 2013. "Pricing European options on deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 300-311.
    9. Wang, Ting & Young, Virginia R., 2016. "Hedging pure endowments with mortality derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 238-255.
    10. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    11. Chou-Wen Wang & Sharon S. Yang, 2013. "Pricing Survivor Derivatives With Cohort Mortality Dependence Under the Lee–Carter Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 1027-1056, December.
    12. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    13. Ting Wang & Virginia R. Young, 2010. "Hedging Pure Endowments with Mortality Derivatives," Papers 1011.0248, arXiv.org.
    14. Jennifer L. Wang & H.C. Huang & Sharon S. Yang & Jeffrey T. Tsai, 2010. "An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 473-497, June.
    15. Man Chung Fung & Katja Ignatieva & Michael Sherris, 2019. "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives," Risks, MDPI, vol. 7(1), pages 1-25, January.
    16. Craig Blackburn & Michael Sherris, 2011. "Consistent Dynamic Affine Mortality Model for Longevity Risk Applications," Working Papers 201107, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
    17. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    18. Ngai, Andrew & Sherris, Michael, 2011. "Longevity risk management for life and variable annuities: The effectiveness of static hedging using longevity bonds and derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 100-114, July.
    19. Tsai, Jeffrey T. & Wang, Jennifer L. & Tzeng, Larry Y., 2010. "On the optimal product mix in life insurance companies using conditional value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 235-241, February.
    20. Russo, Vincenzo & Giacometti, Rosella & Ortobelli, Sergio & Rachev, Svetlozar & Fabozzi, Frank J., 2011. "Calibrating affine stochastic mortality models using term assurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 53-60, July.

    More about this item

    Keywords

    Longevity Risk; Mortality model; multi-factor; consistent; Affine; Kalman filter;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01678050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.