IDEAS home Printed from https://ideas.repec.org/p/asb/wpaper/201107.html
   My bibliography  Save this paper

Consistent Dynamic Affine Mortality Model for Longevity Risk Applications

Author

Listed:
  • Craig Blackburn

    (School of Risk and Actuarial Studies and ARC Centre of Excellence in Population Ageing Research, Australian School of Business, University of New South Wales)

  • Michael Sherris

    (School of Risk and Actuarial Studies and ARC Centre of Excellence in Population Ageing Research, Australian School of Business, University of New South Wales)

Abstract

This paper proposes and assesses consistent multi-factor dynamic affine mortality models for longevity risk applications. The dynamics of the model produce closed-form expressions for survival curves. The framework includes an arbitrage-free model specification. There are multiple risk factors allowing applications to hedging and pricing mortality and longevity bonds, mortality derivatives and more general risk management problems. A state-space representation is used to estimate parameters for the model with the Kalman filter. A 3-factor model specification is shown to provide a good fit to the observed survival curves especially for older ages, and performs better than the 2-factor models. Consistent models are shown to improve model performance and stability.

Suggested Citation

  • Craig Blackburn & Michael Sherris, 2011. "Consistent Dynamic Affine Mortality Model for Longevity Risk Applications," Working Papers 201107, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
  • Handle: RePEc:asb:wpaper:201107
    as

    Download full text from publisher

    File URL: http://cepar.edu.au/media/48733/Longevity%20Risk%20Applications.pdf
    File Function: First version, 2011
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jens H. E. Christensen & Francis X. Diebold & Glenn D. Rudebusch, 2009. "An arbitrage-free generalized Nelson--Siegel term structure model," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 33-64, November.
    2. Babbs, Simon H. & Nowman, K. Ben, 1999. "Kalman Filtering of Generalized Vasicek Term Structure Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(1), pages 115-130, March.
    3. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    4. Elisa Luciano & Elena Vigna, 2005. "Non mean reverting affine processes for stochastic mortality," ICER Working Papers - Applied Mathematics Series 4-2005, ICER - International Centre for Economic Research.
    5. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    6. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    7. De Rossi, Giuliano, 2004. "Kalman filtering of consistent forward rate curves: a tool to estimate and model dynamically the term structure," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 277-308, March.
    8. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rihab Bedoui & Islem Kedidi, 2018. "Modeling Longevity Risk using Consistent Dynamics Affine Mortality Models," Working Papers hal-01678050, HAL.
    2. Blackburn, Craig & Sherris, Michael, 2013. "Consistent dynamic affine mortality models for longevity risk applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 64-73.
    3. Date, Paresh & Wang, Chieh, 2009. "Linear Gaussian affine term structure models with unobservable factors: Calibration and yield forecasting," European Journal of Operational Research, Elsevier, vol. 195(1), pages 156-166, May.
    4. Januj Juneja, 2015. "An evaluation of alternative methods used in the estimation of Gaussian term structure models," Review of Quantitative Finance and Accounting, Springer, vol. 44(1), pages 1-24, January.
    5. Ignatieva, Katja & Song, Andrew & Ziveyi, Jonathan, 2016. "Pricing and hedging of guaranteed minimum benefits under regime-switching and stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 286-300.
    6. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    7. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    8. Caldeira, João F. & Laurini, Márcio P. & Portugal, Marcelo S., 2010. "Bayesian Inference Applied to Dynamic Nelson-Siegel Model with Stochastic Volatility," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(1), October.
    9. Leo Krippner, 2009. "A theoretical foundation for the Nelson and Siegel class of yield curve models," Reserve Bank of New Zealand Discussion Paper Series DP2009/10, Reserve Bank of New Zealand.
    10. Zeddouk, Fadoua & Devolder, Pierre, 2019. "Mean reversion in stochastic mortality : why and how?," LIDAM Discussion Papers ISBA 2019018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Wali Ullah, 2020. "The arbitrage-free generalized Nelson–Siegel term structure model: Does a good in-sample fit imply better out-of-sample forecasts?," Empirical Economics, Springer, vol. 59(3), pages 1243-1284, September.
    12. Gonzalo Cortazar & Eduardo S. Schwartz & Lorenzo F. Naranjo, 2007. "Term-structure estimation in markets with infrequent trading," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(4), pages 353-369.
    13. João F. Caldeira & Guilherme V. Moura & , Fabricio Tourrucôo, 2016. "Forecasting the yield curve with the arbitrage-free dynamic Nelson-Siegel model: Brazilian evidence," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 17(2), pages 221-237.
    14. Cortazar, Gonzalo & Schwartz, Eduardo S. & Naranjo, Lorezo, 2003. "Term Structure Estimation in Low-Frequency Transaction Markets: A Kalman Filter Approach with Incomplete Panel-Data," University of California at Los Angeles, Anderson Graduate School of Management qt56h775cz, Anderson Graduate School of Management, UCLA.
    15. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    16. Yang Chang & Michael Sherris, 2018. "Longevity Risk Management and the Development of a Value-Based Longevity Index," Risks, MDPI, vol. 6(1), pages 1-20, February.
    17. Almeida, Caio Ibsen Rodrigues de, 2005. "A Note on the Relation Between Principal Components and Dynamic Factors in Affine Term Structure Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 25(1), May.
    18. Juneja, Januj, 2017. "Invariance, observational equivalence, and identification: Some implications for the empirical performance of affine term structure models," The Quarterly Review of Economics and Finance, Elsevier, vol. 64(C), pages 292-305.
    19. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    20. Dang-Nguyen, Stéphane & Le Caillec, Jean-Marc & Hillion, Alain, 2014. "The deterministic shift extension and the affine dynamic Nelson–Siegel model," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 402-417.

    More about this item

    Keywords

    Mortality model; longevity risk; multi-factor; affine; arbitrage-free; consistent; Kalman filter; Swedish mortality;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:asb:wpaper:201107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Elena Capatina (email available below). General contact details of provider: https://edirc.repec.org/data/ceparau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.