IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00593394.html
   My bibliography  Save this paper

Stochastic Games with a Single Controller and Incomplete Information

Author

Listed:
  • Dinah Rosenberg

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • Eilon Solan

    (TAU - School of Mathematical Sciences [Tel Aviv] - TAU - Raymond and Beverly Sackler Faculty of Exact Sciences [Tel Aviv] - TAU - Tel Aviv University)

  • Nicolas Vieille

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

Abstract

We study stochastic games with incomplete information on one side, in which the transition is controlled by one of the players. We prove that if the informed player also controls the transitions, the game has a value, whereas if the uninformed player controls the transitions, the max-min value as well as the min-max value exist, but they may differ. We discuss the structure of the optimal strategies, and provide extensions to the case of incomplete information on both sides.

Suggested Citation

  • Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 2002. "Stochastic Games with a Single Controller and Incomplete Information," Working Papers hal-00593394, HAL.
  • Handle: RePEc:hal:wpaper:hal-00593394
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bernard De Meyer, 1996. "Repeated Games, Duality and the Central Limit Theorem," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 237-251, February.
    2. Robert J. Aumann, 1995. "Repeated Games with Incomplete Information," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011476, April.
    3. SORIN, Sylvain, 1984. "'Big match' with lack of information on one side (part 1)," LIDAM Reprints CORE 601, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Aumann, Robert J. & Heifetz, Aviad, 2002. "Incomplete information," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 43, pages 1665-1686, Elsevier.
    5. Mertens, Jean-Francois, 2002. "Stochastic games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 47, pages 1809-1832, Elsevier.
    6. repec:dau:papers:123456789/6231 is not listed on IDEAS
    7. Nicolas Vieille & Dinah Rosenberg, 2000. "The Maxmin of Recursive Games with Incomplete Information on one Side," Post-Print hal-00481429, HAL.
    8. Mertens, J.-F. & Zamir, S., 1980. "Minmax and maxmin of repeated games with incomplete information," LIDAM Reprints CORE 433, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Keith W. Ross & Ravi Varadarajan, 1991. "Multichain Markov Decision Processes with a Sample Path Constraint: A Decomposition Approach," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 195-207, February.
    10. Mertens,Jean-François & Sorin,Sylvain & Zamir,Shmuel, 2015. "Repeated Games," Cambridge Books, Cambridge University Press, number 9781107030206, September.
      • Mertens,Jean-François & Sorin,Sylvain & Zamir,Shmuel, 2015. "Repeated Games," Cambridge Books, Cambridge University Press, number 9781107662636, September.
    11. De Meyer, B., 1996. "Repeated games, duality and the central limit theorem," LIDAM Reprints CORE 1210, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. DE MEYER , Bernard, 1993. "Repeated Games and the Central Limit Theorem," LIDAM Discussion Papers CORE 1993003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. MERTENS, Jean-François & ZAMIR, Shmuel, 1971. "The value of two-person zero-sum repeated games with lack of information on both sides," LIDAM Reprints CORE 154, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Bernard de Meyer, 1996. "Repeated games, Duality, and the Central Limit Theorem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00259714, HAL.
    15. Zamir, Shmuel, 1992. "Repeated games of incomplete information: Zero-sum," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 5, pages 109-154, Elsevier.
    16. Dinah Rosenberg & Nicolas Vieille, 2000. "The Maxmin of Recursive Games with Incomplete Information on one Side," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 23-35, February.
    17. Bernard de Meyer, 1996. "Repeated games, Duality, and the Central Limit Theorem," Post-Print hal-00259714, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhruva Kartik & Ashutosh Nayyar, 2021. "Upper and Lower Values in Zero-Sum Stochastic Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 11(2), pages 363-388, June.
    2. Hugo Gimbert & Jérôme Renault & Sylvain Sorin & Xavier Venel & Wieslaw Zielonka, 2016. "On the values of repeated games with signals," PSE-Ecole d'économie de Paris (Postprint) hal-01006951, HAL.
    3. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 2002. "Stochastic Games with Imperfect Monitoring," Discussion Papers 1341, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    5. Jérôme Renault, 2006. "The Value of Markov Chain Games with Lack of Information on One Side," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 490-512, August.
    6. Jérôme Renault & Xavier Venel, 2017. "Long-Term Values in Markov Decision Processes and Repeated Games, and a New Distance for Probability Spaces," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 349-376, May.
    7. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," PSE-Ecole d'économie de Paris (Postprint) hal-01302553, HAL.
    8. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.
    9. Erim Kardeş & Fernando Ordóñez & Randolph W. Hall, 2011. "Discounted Robust Stochastic Games and an Application to Queueing Control," Operations Research, INFORMS, vol. 59(2), pages 365-382, April.
    10. Abraham Neyman, 2002. "Stochastic games: Existence of the MinMax," Discussion Paper Series dp295, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    11. Banas, Lubomir & Ferrari, Giorgio & Randrianasolo, Tsiry Avisoa, 2020. "Numerical Appromixation of the Value of a Stochastic Differential Game with Asymmetric Information," Center for Mathematical Economics Working Papers 630, Center for Mathematical Economics, Bielefeld University.
    12. Bruno Ziliotto, 2016. "A Tauberian Theorem for Nonexpansive Operators and Applications to Zero-Sum Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1522-1534, November.
    13. Jérôme Renault, 2012. "The Value of Repeated Games with an Informed Controller," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 154-179, February.
    14. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," Post-Print hal-01302553, HAL.
    15. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01302553, HAL.
    16. P. Cardaliaguet, 2008. "Representations Formulas for Some Differential Games with Asymmetric Information," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Vieille, Nicolas, 2002. "Stochastic games: Recent results," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 48, pages 1833-1850, Elsevier.
    3. Fedor Sandomirskiy, 2018. "On Repeated Zero-Sum Games with Incomplete Information and Asymptotically Bounded Values," Dynamic Games and Applications, Springer, vol. 8(1), pages 180-198, March.
    4. Fabien Gensbittel & Miquel Oliu-Barton, 2020. "Optimal Strategies in Zero-Sum Repeated Games with Incomplete Information: The Dependent Case," Dynamic Games and Applications, Springer, vol. 10(4), pages 819-835, December.
    5. Abraham Neyman & Sylvain Sorin, 2010. "Repeated games with public uncertain duration process," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 29-52, March.
    6. Rainer Buckdahn & Marc Quincampoix & Catherine Rainer & Yuhong Xu, 2016. "Differential games with asymmetric information and without Isaacs’ condition," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 795-816, November.
    7. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.
    8. Fabien Gensbittel, 2015. "Extensions of the Cav( u ) Theorem for Repeated Games with Incomplete Information on One Side," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 80-104, February.
    9. Bernard De Meyer & Alexandre Marino, 2005. "Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides," Cahiers de la Maison des Sciences Economiques b05027, Université Panthéon-Sorbonne (Paris 1).
    10. R. Buckdahn & P. Cardaliaguet & M. Quincampoix, 2011. "Some Recent Aspects of Differential Game Theory," Dynamic Games and Applications, Springer, vol. 1(1), pages 74-114, March.
    11. P. Cardaliaguet, 2008. "Representations Formulas for Some Differential Games with Asymmetric Information," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 1-16, July.
    12. Xiaochi Wu, 2022. "Existence of value for a differential game with asymmetric information and signal revealing," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 213-247, March.
    13. Abraham Neyman, 2012. "The value of two-person zero-sum repeated games with incomplete information and uncertain duration," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 195-207, February.
    14. Bernard De Meyer & Ehud Lehrer & Dinah Rosenberg, 2010. "Evaluating Information in Zero-Sum Games with Incomplete Information on Both Sides," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 851-863, November.
    15. Fabien Gensbittel, 2019. "Continuous-Time Markov Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 9(3), pages 671-699, September.
    16. Rida Laraki, 2010. "Explicit formulas for repeated games with absorbing states," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 53-69, March.
    17. Xiaochi Wu, 2019. "Infinite Horizon Differential Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 9(3), pages 858-880, September.
    18. Jérôme Bolte & Stéphane Gaubert & Guillaume Vigeral, 2015. "Definable Zero-Sum Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 171-191, February.
    19. M. K. Ghosh & D. McDonald & S. Sinha, 2004. "Zero-Sum Stochastic Games with Partial Information," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 99-118, April.
    20. Fabien Gensbittel & Christine Grün, 2019. "Zero-Sum Stopping Games with Asymmetric Information," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 277-302, February.

    More about this item

    Keywords

    Minimax method; Game value; Stochastic game; Incomplete information; Optimal strategy; Uncertain system;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00593394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.