IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03166411.html
   My bibliography  Save this paper

Optimal Strategies in Zero-Sum Repeated Games with Incomplete Information: The Dependent Case

Author

Listed:
  • Fabien Gensbittel

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Miquel Oliu-Barton

Abstract

Using the duality techniques introduced by De Meyer (Math Oper Res 21:209–236, 1996a, Math Oper Res 21:237–251, 1996b), Rosenberg (Int J Game Theory 27:577–597, 1998) and De Meyer and Marino (Cahiers de la MSE 27, 2005) provided an explicit construction for optimal strategies in repeated games with incomplete information on both sides, in the independent case. In this note, we extend both the duality techniques and the construction of optimal strategies to the dependent case.

Suggested Citation

  • Fabien Gensbittel & Miquel Oliu-Barton, 2020. "Optimal Strategies in Zero-Sum Repeated Games with Incomplete Information: The Dependent Case," Post-Print hal-03166411, HAL.
  • Handle: RePEc:hal:journl:hal-03166411
    DOI: 10.1007/s13235-020-00347-y
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bernard De Meyer, 1996. "Repeated Games, Duality and the Central Limit Theorem," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 237-251, February.
    2. Bernard de Meyer, 1996. "Repeated games and Partial Differential Equations," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00259711, HAL.
    3. Miquel Oliu-Barton, 2015. "Differential Games with Asymmetric and Correlated Information," Dynamic Games and Applications, Springer, vol. 5(3), pages 378-396, September.
    4. Robert J. Aumann, 1995. "Repeated Games with Incomplete Information," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011476, April.
    5. Dinah Rosenberg, 1998. "Duality and markovian strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(4), pages 577-597.
    6. Bernard de Meyer, 1996. "Repeated games and Partial Differential Equations," Post-Print hal-00259711, HAL.
    7. Miquel Oliu-Barton, 2018. "The Splitting Game: Value and Optimal Strategies," Dynamic Games and Applications, Springer, vol. 8(1), pages 157-179, March.
    8. De Meyer, B., 1996. "Repeated games and partial differential equations," LIDAM Reprints CORE 1209, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. De Meyer, B., 1996. "Repeated games, duality and the central limit theorem," LIDAM Reprints CORE 1210, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Bernard de Meyer & Alexandre Marino, 2005. "Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00193996, HAL.
    11. DE MEYER , Bernard, 1993. "Repeated Games and the Central Limit Theorem," LIDAM Discussion Papers CORE 1993003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Heuer, M, 1992. "Asymptotically Optimal Strategies in Repeated Games with Incomplete Information," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 377-392.
    13. MERTENS, Jean-François & ZAMIR, Shmuel, 1971. "The value of two-person zero-sum repeated games with lack of information on both sides," LIDAM Reprints CORE 154, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Bernard De Meyer, 1996. "Repeated Games and Partial Differential Equations," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 209-236, February.
    15. Bernard de Meyer, 1996. "Repeated games, Duality, and the Central Limit Theorem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00259714, HAL.
    16. Bernard de Meyer, 1996. "Repeated games, Duality, and the Central Limit Theorem," Post-Print hal-00259714, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miquel Oliu-Barton, 2015. "Differential Games with Asymmetric and Correlated Information," Dynamic Games and Applications, Springer, vol. 5(3), pages 378-396, September.
    2. Chen, Fang & Guo, Xianping, 2023. "Two-person zero-sum risk-sensitive stochastic games with incomplete reward information on one side," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 218-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Fabien Gensbittel, 2015. "Extensions of the Cav( u ) Theorem for Repeated Games with Incomplete Information on One Side," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 80-104, February.
    3. Bernard De Meyer & Ehud Lehrer & Dinah Rosenberg, 2010. "Evaluating Information in Zero-Sum Games with Incomplete Information on Both Sides," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 851-863, November.
    4. Fedor Sandomirskiy, 2018. "On Repeated Zero-Sum Games with Incomplete Information and Asymptotically Bounded Values," Dynamic Games and Applications, Springer, vol. 8(1), pages 180-198, March.
    5. VIEILLE, Nicolas & ROSENBERG, Dinah & SOLAN, Eilon, 2002. "Stochastic games with a single controller and incomplete information," HEC Research Papers Series 754, HEC Paris.
    6. Miquel Oliu-Barton, 2015. "Differential Games with Asymmetric and Correlated Information," Dynamic Games and Applications, Springer, vol. 5(3), pages 378-396, September.
    7. Rainer Buckdahn & Marc Quincampoix & Catherine Rainer & Yuhong Xu, 2016. "Differential games with asymmetric information and without Isaacs’ condition," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 795-816, November.
    8. Fabien Gensbittel & Christine Grün, 2019. "Zero-Sum Stopping Games with Asymmetric Information," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 277-302, February.
    9. Xiaochi Wu, 2019. "Infinite Horizon Differential Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 9(3), pages 858-880, September.
    10. Xiaochi Wu, 2022. "Existence of value for a differential game with asymmetric information and signal revealing," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 213-247, March.
    11. Chen, Fang & Guo, Xianping, 2023. "Two-person zero-sum risk-sensitive stochastic games with incomplete reward information on one side," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 218-245.
    12. Fabien Gensbittel, 2019. "Continuous-Time Markov Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 9(3), pages 671-699, September.
    13. R. Buckdahn & P. Cardaliaguet & M. Quincampoix, 2011. "Some Recent Aspects of Differential Game Theory," Dynamic Games and Applications, Springer, vol. 1(1), pages 74-114, March.
    14. P. Cardaliaguet, 2008. "Representations Formulas for Some Differential Games with Asymmetric Information," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 1-16, July.
    15. Rida Laraki, 2002. "Repeated Games with Lack of Information on One Side: The Dual Differential Approach," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 419-440, May.
    16. Bernard de Meyer & Alexandre Marino, 2005. "Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00193996, HAL.
    17. Koessler, Frederic & Laclau, Marie & Renault, Jérôme & Tomala, Tristan, 2022. "Long information design," Theoretical Economics, Econometric Society, vol. 17(2), May.
    18. Miquel Oliu-Barton, 2018. "The Splitting Game: Value and Optimal Strategies," Dynamic Games and Applications, Springer, vol. 8(1), pages 157-179, March.
    19. Rida Laraki & Jérôme Renault, 2020. "Acyclic Gambling Games," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1237-1257, November.
    20. Ashkenazi-Golan, Galit & Rainer, Catherine & Solan, Eilon, 2020. "Solving two-state Markov games with incomplete information on one side," Games and Economic Behavior, Elsevier, vol. 122(C), pages 83-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03166411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.