IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01302553.html
   My bibliography  Save this paper

Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "

Author

Listed:
  • Xiaoxi Li

    (Department of Computer Science - Zhejiang University - Zhejiang University [Hangzhou, China])

  • Xavier Venel

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We study two-player zero-sum recursive games with a countable state space and finite action spaces at each state. When the family of n-stage values {v_n;n >0} is totally bounded for the uniform norm, we prove the existence of the uniform value. Together with a result in Rosenberg and Vieille [12], we obtain a uniform Tauberian theorem for recursive game: (v_n) converges uniformly if and only if (v_λ) converges uniformly. We apply our main result to finite recursive games with signals (where players observe only signals on the state and on past actions). When the maximizer is more informed than the minimizer, we prove the Mertens conjecture Maxmin = lim v_n = lim v_λ. Finally, we deduce the existence of the uniform value in finite recursive games with symmetric information.

Suggested Citation

  • Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," Post-Print hal-01302553, HAL.
  • Handle: RePEc:hal:journl:hal-01302553
    DOI: 10.1007/s00182-015-0496-4
    Note: View the original document on HAL open archive server: https://paris1.hal.science/hal-01302553
    as

    Download full text from publisher

    File URL: https://paris1.hal.science/hal-01302553/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s00182-015-0496-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lehrer Ehud & Monderer Dov, 1994. "Discounting versus Averaging in Dynamic Programming," Games and Economic Behavior, Elsevier, vol. 6(1), pages 97-113, January.
    2. SORIN, Sylvain, 1984. "'Big match' with lack of information on one side (part 1)," LIDAM Reprints CORE 601, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. MERTENS, Jean-François, 1987. "Repeated games. Proceedings of the International Congress of Mathematicians," LIDAM Reprints CORE 788, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Monderer, Dov & Sorin, Sylvain, 1993. "Asymptotic Properties in Dynamic Programming," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(1), pages 1-11.
    5. repec:dau:papers:123456789/6231 is not listed on IDEAS
    6. Nicolas Vieille & Dinah Rosenberg, 2000. "The Maxmin of Recursive Games with Incomplete Information on one Side," Post-Print hal-00481429, HAL.
    7. Truman Bewley & Elon Kohlberg, 1976. "The Asymptotic Theory of Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 1(3), pages 197-208, August.
    8. VIEILLE, Nicolas & ROSENBERG, Dinah & SOLAN, Eilon, 2002. "Stochastic games with a single controller and incomplete information," HEC Research Papers Series 754, HEC Paris.
    9. Ehud Lehrer & Sylvain Sorin, 1992. "A Uniform Tauberian Theorem in Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 17(2), pages 303-307, May.
    10. Eilon Solan & Nicolas Vieille, 2000. "Uniform Value in Recursive Games," Discussion Papers 1293, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    11. Jérôme Renault, 2012. "The Value of Repeated Games with an Informed Controller," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 154-179, February.
    12. Dinah Rosenberg & Nicolas Vieille, 2000. "The Maxmin of Recursive Games with Incomplete Information on one Side," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 23-35, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhruva Kartik & Ashutosh Nayyar, 2021. "Upper and Lower Values in Zero-Sum Stochastic Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 11(2), pages 363-388, June.
    2. Ziliotto, Bruno, 2018. "Tauberian theorems for general iterations of operators: Applications to zero-sum stochastic games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 486-503.
    3. Dmitry Khlopin, 2018. "Tauberian Theorem for Value Functions," Dynamic Games and Applications, Springer, vol. 8(2), pages 401-422, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01302553, HAL.
    2. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," PSE-Ecole d'économie de Paris (Postprint) hal-01302553, HAL.
    3. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.
    4. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    5. Jérôme Renault & Xavier Venel, 2017. "Long-Term Values in Markov Decision Processes and Repeated Games, and a New Distance for Probability Spaces," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 349-376, May.
    6. Abraham Neyman & Sylvain Sorin, 2010. "Repeated games with public uncertain duration process," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 29-52, March.
    7. Hugo Gimbert & Jérôme Renault & Sylvain Sorin & Xavier Venel & Wieslaw Zielonka, 2016. "On the values of repeated games with signals," PSE-Ecole d'économie de Paris (Postprint) hal-01006951, HAL.
    8. Eilon Solan & Nicolas Vieille, 2000. "Uniform Value in Recursive Games," Discussion Papers 1293, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    9. Bruno Ziliotto, 2016. "A Tauberian Theorem for Nonexpansive Operators and Applications to Zero-Sum Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1522-1534, November.
    10. Jérôme Bolte & Stéphane Gaubert & Guillaume Vigeral, 2015. "Definable Zero-Sum Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 171-191, February.
    11. Eilon Solan, 2005. "Subgame-Perfection in Quitting Games with Perfect Information and Differential Equations," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 51-72, February.
    12. Vieille, Nicolas, 2002. "Stochastic games: Recent results," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 48, pages 1833-1850, Elsevier.
    13. Jérôme Renault, 2006. "The Value of Markov Chain Games with Lack of Information on One Side," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 490-512, August.
    14. M. K. Ghosh & D. McDonald & S. Sinha, 2004. "Zero-Sum Stochastic Games with Partial Information," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 99-118, April.
    15. VIEILLE, Nicolas & ROSENBERG, Dinah & SOLAN, Eilon, 2002. "Stochastic games with a single controller and incomplete information," HEC Research Papers Series 754, HEC Paris.
    16. Dmitry Khlopin, 2018. "Tauberian Theorem for Value Functions," Dynamic Games and Applications, Springer, vol. 8(2), pages 401-422, June.
    17. repec:dau:papers:123456789/10880 is not listed on IDEAS
    18. Guillaume Vigeral, 2013. "A Zero-Sum Stochastic Game with Compact Action Sets and no Asymptotic Value," Dynamic Games and Applications, Springer, vol. 3(2), pages 172-186, June.
    19. Solan, Eilon & Vieille, Nicolas, 2002. "Correlated Equilibrium in Stochastic Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 362-399, February.
    20. Dhruva Kartik & Ashutosh Nayyar, 2021. "Upper and Lower Values in Zero-Sum Stochastic Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 11(2), pages 363-388, June.
    21. Hansen, Kristoffer Arnsfelt & Ibsen-Jensen, Rasmus & Neyman, Abraham, 2021. "Absorbing games with a clock and two bits of memory," Games and Economic Behavior, Elsevier, vol. 128(C), pages 213-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01302553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.