IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v9y2019i3d10.1007_s13235-018-0273-7.html
   My bibliography  Save this article

Continuous-Time Markov Games with Asymmetric Information

Author

Listed:
  • Fabien Gensbittel

    (University Toulouse 1 Capitole)

Abstract

We study a two-player zero-sum stochastic differential game with asymmetric information where the payoff depends on a controlled continuous-time Markov chain X with finite state space which is only observed by player 1. This model was already studied in Cardaliaguet et al (Math Oper Res 41(1):49–71, 2016) through an approximating sequence of discrete-time games. Our first contribution is the proof of the existence of the value in the continuous-time model based on duality techniques. This value is shown to be the unique solution of the same Hamilton–Jacobi equation with convexity constraints which characterized the limit value obtained in Cardaliaguet et al. (2016). Our second main contribution is to provide a simpler equivalent formulation for this Hamilton–Jacobi equation using directional derivatives and exposed points, which we think is interesting for its own sake as the associated comparison principle has a very simple proof which avoids all the technical machinery of viscosity solutions.

Suggested Citation

  • Fabien Gensbittel, 2019. "Continuous-Time Markov Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 9(3), pages 671-699, September.
  • Handle: RePEc:spr:dyngam:v:9:y:2019:i:3:d:10.1007_s13235-018-0273-7
    DOI: 10.1007/s13235-018-0273-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-018-0273-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-018-0273-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernard De Meyer, 1996. "Repeated Games, Duality and the Central Limit Theorem," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 237-251, February.
    2. Miquel Oliu-Barton, 2015. "Differential Games with Asymmetric and Correlated Information," Dynamic Games and Applications, Springer, vol. 5(3), pages 378-396, September.
    3. Pierre Cardaliaguet & Catherine Rainer & Dinah Rosenberg & Nicolas Vieille, 2016. "Markov Games with Frequent Actions and Incomplete Information—The Limit Case," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 49-71, February.
    4. repec:dau:papers:123456789/6927 is not listed on IDEAS
    5. Jérôme Renault, 2006. "The Value of Markov Chain Games with Lack of Information on One Side," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 490-512, August.
    6. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    7. De Meyer, B., 1996. "Repeated games, duality and the central limit theorem," LIDAM Reprints CORE 1210, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Fabien Gensbittel & Catherine Rainer, 2018. "A Two-Player Zero-sum Game Where Only One Player Observes a Brownian Motion," Dynamic Games and Applications, Springer, vol. 8(2), pages 280-314, June.
    9. Pierre Cardaliaguet & Catherine Rainer, 2012. "Games with Incomplete Information in Continuous Time and for Continuous Types," Dynamic Games and Applications, Springer, vol. 2(2), pages 206-227, June.
    10. Fabien Gensbittel & Christine Grün, 2019. "Zero-Sum Stopping Games with Asymmetric Information," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 277-302, February.
    11. MERTENS, Jean-François & ZAMIR, Shmuel, 1971. "The value of two-person zero-sum repeated games with lack of information on both sides," LIDAM Reprints CORE 154, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Chloe Jimenez & Marc Quincampoix & Yuhong Xu, 2016. "Differential Games with Incomplete Information on a Continuum of Initial Positions and without Isaacs Condition," Dynamic Games and Applications, Springer, vol. 6(1), pages 82-96, March.
    13. Fabien Gensbittel & Jérôme Renault, 2015. "The Value of Markov Chain Games with Incomplete Information on Both Sides," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 820-841, October.
    14. Abraham Neyman, 2008. "Existence of optimal strategies in Markov games with incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 581-596, December.
    15. Bernard de Meyer, 1996. "Repeated games, Duality, and the Central Limit Theorem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00259714, HAL.
    16. Bernard de Meyer, 1996. "Repeated games, Duality, and the Central Limit Theorem," Post-Print hal-00259714, HAL.
    17. Rainer Buckdahn & Marc Quincampoix & Catherine Rainer & Yuhong Xu, 2016. "Differential games with asymmetric information and without Isaacs’ condition," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 795-816, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashkenazi-Golan, Galit & Hernández, Penélope & Neeman, Zvika & Solan, Eilon, 2023. "Markovian persuasion with two states," Games and Economic Behavior, Elsevier, vol. 142(C), pages 292-314.
    2. Ashkenazi-Golan, Galit & Rainer, Catherine & Solan, Eilon, 2020. "Solving two-state Markov games with incomplete information on one side," Games and Economic Behavior, Elsevier, vol. 122(C), pages 83-104.
    3. Ashkenazi-Golan, Galit & Hernández, Penélope & Neeman, Zvika & Solan, Eilon, 2023. "Markovian persuasion with two states," LSE Research Online Documents on Economics 119970, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabien Gensbittel & Christine Grün, 2019. "Zero-Sum Stopping Games with Asymmetric Information," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 277-302, February.
    2. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    3. Xiaochi Wu, 2019. "Infinite Horizon Differential Games with Asymmetric Information," Dynamic Games and Applications, Springer, vol. 9(3), pages 858-880, September.
    4. Ashkenazi-Golan, Galit & Rainer, Catherine & Solan, Eilon, 2020. "Solving two-state Markov games with incomplete information on one side," Games and Economic Behavior, Elsevier, vol. 122(C), pages 83-104.
    5. Xiaochi Wu, 2022. "Existence of value for a differential game with asymmetric information and signal revealing," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 213-247, March.
    6. Rainer Buckdahn & Marc Quincampoix & Catherine Rainer & Yuhong Xu, 2016. "Differential games with asymmetric information and without Isaacs’ condition," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 795-816, November.
    7. Fabien Gensbittel & Miquel Oliu-Barton, 2020. "Optimal Strategies in Zero-Sum Repeated Games with Incomplete Information: The Dependent Case," Dynamic Games and Applications, Springer, vol. 10(4), pages 819-835, December.
    8. VIEILLE, Nicolas & ROSENBERG, Dinah & SOLAN, Eilon, 2002. "Stochastic games with a single controller and incomplete information," HEC Research Papers Series 754, HEC Paris.
    9. Fabien Gensbittel, 2015. "Extensions of the Cav( u ) Theorem for Repeated Games with Incomplete Information on One Side," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 80-104, February.
    10. Bruno Ziliotto, 2016. "A Tauberian Theorem for Nonexpansive Operators and Applications to Zero-Sum Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1522-1534, November.
    11. Pierre Cardaliaguet & Catherine Rainer & Dinah Rosenberg & Nicolas Vieille, 2016. "Markov Games with Frequent Actions and Incomplete Information—The Limit Case," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 49-71, February.
    12. Bernard De Meyer & Ehud Lehrer & Dinah Rosenberg, 2010. "Evaluating Information in Zero-Sum Games with Incomplete Information on Both Sides," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 851-863, November.
    13. Bernard De Meyer & Alexandre Marino, 2005. "Duality and optimal strategies in the finitely repeated zero-sum games with incomplete information on both sides," Cahiers de la Maison des Sciences Economiques b05027, Université Panthéon-Sorbonne (Paris 1).
    14. R. Buckdahn & P. Cardaliaguet & M. Quincampoix, 2011. "Some Recent Aspects of Differential Game Theory," Dynamic Games and Applications, Springer, vol. 1(1), pages 74-114, March.
    15. Fedor Sandomirskiy, 2018. "On Repeated Zero-Sum Games with Incomplete Information and Asymptotically Bounded Values," Dynamic Games and Applications, Springer, vol. 8(1), pages 180-198, March.
    16. P. Cardaliaguet, 2008. "Representations Formulas for Some Differential Games with Asymmetric Information," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 1-16, July.
    17. Xiaochi Wu, 2021. "Differential Games with Incomplete Information and with Signal Revealing: The Symmetric Case," Dynamic Games and Applications, Springer, vol. 11(4), pages 863-891, December.
    18. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.
    19. Chen, Fang & Guo, Xianping, 2023. "Two-person zero-sum risk-sensitive stochastic games with incomplete reward information on one side," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 218-245.
    20. Fabien Gensbittel & Catherine Rainer, 2018. "A Two-Player Zero-sum Game Where Only One Player Observes a Brownian Motion," Dynamic Games and Applications, Springer, vol. 8(2), pages 280-314, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:9:y:2019:i:3:d:10.1007_s13235-018-0273-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.