IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00481429.html
   My bibliography  Save this paper

The Maxmin of Recursive Games with Incomplete Information on one Side

Author

Listed:
  • Nicolas Vieille

    (CECO - Laboratoire d'économétrie de l'École polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Dinah Rosenberg

    (LAGA - Laboratoire Analyse, Géométrie et Applications - UP8 - Université Paris 8 Vincennes-Saint-Denis - UP13 - Université Paris 13 - Institut Galilée - CNRS - Centre National de la Recherche Scientifique)

Abstract

We prove the existence of the maxmin of zero-sum recursive games with one sided information.

Suggested Citation

  • Nicolas Vieille & Dinah Rosenberg, 2000. "The Maxmin of Recursive Games with Incomplete Information on one Side," Post-Print hal-00481429, HAL.
  • Handle: RePEc:hal:journl:hal-00481429
    DOI: 10.1287/moor.25.1.23.15206
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dinah Rosenberg & Eilon Solan & Nicolas Vieille, 2002. "Stochastic Games with a Single Controller and Incomplete Information," Discussion Papers 1346, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Eilon Solan & Nicolas Vieille, 2000. "Uniform Value in Recursive Games," Discussion Papers 1293, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Vieille, Nicolas, 2002. "Stochastic games: Recent results," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 48, pages 1833-1850, Elsevier.
    4. Solan, Eilon & Vieille, Nicolas, 2002. "Correlated Equilibrium in Stochastic Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 362-399, February.
    5. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," Post-Print hal-01302553, HAL.
    6. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01302553, HAL.
    7. Abraham Neyman & Sylvain Sorin, 2010. "Repeated games with public uncertain duration process," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 29-52, March.
    8. Jérôme Bolte & Stéphane Gaubert & Guillaume Vigeral, 2015. "Definable Zero-Sum Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 171-191, February.
    9. Eilon Solan, 2002. "Subgame-Perfection in Quitting Games with Perfect Information and Differential Equations," Discussion Papers 1356, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    10. Itai Arieli & Yehuda Levy, 2011. "Infinite sequential games with perfect but incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 207-213, May.
    11. Eilon Solan, 2005. "Subgame-Perfection in Quitting Games with Perfect Information and Differential Equations," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 51-72, February.
    12. Xiaoxi Li & Xavier Venel, 2016. "Recursive games: Uniform value, Tauberian theorem and the Mertens conjecture " M axmin = lim v n = lim v λ "," PSE-Ecole d'économie de Paris (Postprint) hal-01302553, HAL.
    13. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.
    14. M. K. Ghosh & D. McDonald & S. Sinha, 2004. "Zero-Sum Stochastic Games with Partial Information," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 99-118, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00481429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.