IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00395495.html
   My bibliography  Save this paper

Sur une classe de transformations itérées pour l'ajustement et la simulation stochastique

Author

Listed:
  • Alexis Bienvenüe

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Didier Rullière

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

Nous proposons une classe paramétrée de distorsions de probabilités qui permettent, itérées, de s'approcher aussi finement que voulu d'une fonction de survie cible. Par construction, la classe proposée respecte plusieurs propriétés que nous détaillons, et en particulier l'inversibilité analytique et la stabilité dont nous présentons l'intérêt pour certaines études actuarielles. Nous étudions l'impact asymptotique de ces distorsions sur le taux de hasard. Nous formulons les conditions sous lesquelles distorsions proposées constituent la base d'un indicateur de risque. Nous établissons la forme des compositions de distorsions ainsi que la convergence de la loi initiale déformée vers la loi cible. Une méthodologie d'estimation et des valeurs d'initialisations sont proposées. Des applications à l'analyse de la mortalité fournissent des résultats pour la modélisation d'évènements catastrophiques, ainsi que des représentations paramétrées très fidèles de l'évolution des lois de mortalité au fil des ans. Une analyse de l'impact de la paramétrisation choisie est également conduite. Nous suggérons finalement un modèle de simulation de mortalité prospective qui découle des constructions précédentes.

Suggested Citation

  • Alexis Bienvenüe & Didier Rullière, 2009. "Sur une classe de transformations itérées pour l'ajustement et la simulation stochastique," Working Papers hal-00395495, HAL.
  • Handle: RePEc:hal:wpaper:hal-00395495
    Note: View the original document on HAL open archive server: https://hal.science/hal-00395495
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00395495/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jong, Piet De & Marshall, Claymore, 2007. "Mortality Projection Based on the Wang Transform," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 149-161, May.
    2. Goovaerts, Marc J. & Kaas, Rob & Dhaene, Jan & Tang, Qihe, 2004. "Some new classes of consistent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 505-516, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Bienvenüe & Didier Rullière, 2012. "Iterative Adjustment of Survival Functions by Composed Probability Distortions," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 37(2), pages 156-179, September.
    2. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    3. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    4. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    5. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "An alternative class of distortion operators," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01543251, HAL.
    6. Asimit, Alexandru V. & Badescu, Alexandru M. & Cheung, Ka Chun, 2013. "Optimal reinsurance in the presence of counterparty default risk," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 690-697.
    7. Asimit, Alexandru V. & Chi, Yichun & Hu, Junlei, 2015. "Optimal non-life reinsurance under Solvency II Regime," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 227-237.
    8. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    9. Roy Cerqueti & Raffaella Coppier & Gustavo Piga, 2012. "Corruption, growth and ethnic fractionalization: a theoretical model," Journal of Economics, Springer, vol. 106(2), pages 153-181, June.
    10. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    11. Bellini, Fabio & Rosazza Gianin, Emanuela, 2008. "On Haezendonck risk measures," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 986-994, June.
    12. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    13. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel & Heras, Antonio, 2022. "Risk transference constraints in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 27-40.
    14. Jacie Jia Liu, 2021. "A Study on Link Functions for Modelling and Forecasting Old-Age Survival Probabilities of Australia and New Zealand," Risks, MDPI, vol. 9(1), pages 1-18, January.
    15. Bellini Fabio & Rosazza Gianin Emanuela, 2008. "Optimal portfolios with Haezendonck risk measures," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 89-108, March.
    16. Hashorva, Enkelejd, 2005. "Extremes of asymptotically spherical and elliptical random vectors," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 285-302, June.
    17. Tang, Qihe & Yang, Fan, 2014. "Extreme value analysis of the Haezendonck–Goovaerts risk measure with a general Young function," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 311-320.
    18. Wang, Xing & Peng, Liang, 2016. "Inference for intermediate Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 231-240.
    19. Bellini, Fabio & Rosazza Gianin, Emanuela, 2012. "Haezendonck–Goovaerts risk measures and Orlicz quantiles," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 107-114.
    20. repec:cte:idrepe:id-11-04 is not listed on IDEAS
    21. Paola Ferretti & Antonella Campana, 2011. "XL reinsurance with reinstatements and initial premium feasibility in exchangeability hypothesis," Working Papers 2011_14, Department of Economics, University of Venice "Ca' Foscari".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00395495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.