IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v11y2023i1p15n1.html
   My bibliography  Save this article

An optimal transport-based characterization of convex order

Author

Listed:
  • Wiesel Johannes

    (Department of Mathematics, Carnegie Mellon University, Wean Hall, 5000 Forbes Ave, Pittsburgh, PA 15213, USA)

  • Zhang Erica

    (Department of Statistics, Columbia University, 1255 Amsterdam Avenue, New York, NY 10027, USA)

Abstract

For probability measures μ , ν \mu ,\nu , and ρ \rho , define the cost functionals C ( μ , ρ ) ≔ sup π ∈ Π ( μ , ρ ) ∫ ⟨ x , y ⟩ π ( d x , d y ) and C ( ν , ρ ) ≔ sup π ∈ Π ( ν , ρ ) ∫ ⟨ x , y ⟩ π ( d x , d y ) , C\left(\mu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\mu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y)\hspace{1.0em}{\rm{and}}\hspace{1em}C\left(\nu ,\rho ):= \mathop{\sup }\limits_{\pi \in \Pi \left(\nu ,\rho )}\int \langle x,y\rangle \pi \left({\rm{d}}x,{\rm{d}}y), where ⟨ ⋅ , ⋅ ⟩ \langle \cdot ,\cdot \rangle denotes the scalar product and Π ( ⋅ , ⋅ ) \Pi \left(\cdot ,\cdot ) is the set of couplings. We show that two probability measures μ \mu and ν \nu on R d {{\mathbb{R}}}^{d} with finite first moments are in convex order (i.e., μ ≼ c ν \mu {\preccurlyeq }_{c}\nu ) iff C ( μ , ρ ) ≤ C ( ν , ρ ) C\left(\mu ,\rho )\le C\left(\nu ,\rho ) holds for all probability measures ρ \rho on R d {{\mathbb{R}}}^{d} with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of ∫ f d ν − ∫ f d μ \int f{\rm{d}}\nu -\int f{\rm{d}}\mu over all 1-Lipschitz functions f f , which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Rüschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.

Suggested Citation

  • Wiesel Johannes & Zhang Erica, 2023. "An optimal transport-based characterization of convex order," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-15, January.
  • Handle: RePEc:vrs:demode:v:11:y:2023:i:1:p:15:n:1
    DOI: 10.1515/demo-2023-0102
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2023-0102
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2023-0102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    2. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    3. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    4. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel, 2017. "Value-at-Risk Bounds With Variance Constraints," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 923-959, September.
    5. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    6. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    7. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," Post-Print hal-03460952, HAL.
    8. Wang, Bin & Wang, Ruodu, 2011. "The complete mixability and convex minimization problems with monotone marginal densities," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1344-1360, November.
    9. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    10. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," SciencePo Working papers Main hal-03460952, HAL.
    11. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    12. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," SciencePo Working papers hal-03460952, HAL.
    13. Rüschendorf, L. & Rachev, S. T., 1990. "A characterization of random variables with minimum L2-distance," Journal of Multivariate Analysis, Elsevier, vol. 32(1), pages 48-54, January.
    14. Beatrice Acciaio & Mathias Beiglbock & Friedrich Penkner & Walter Schachermayer, 2013. "A model-free version of the fundamental theorem of asset pricing and the super-replication theorem," Papers 1301.5568, arXiv.org, revised Mar 2013.
    15. Aurélien Alfonsi & Jacopo Corbetta & Benjamin Jourdain, 2019. "Sampling Of One-Dimensional Probability Measures In The Convex Order And Computation Of Robust Option Price Bounds," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-41, May.
    16. Aurélien Alfonsi & Jacopo Corbetta & Benjamin Jourdain, 2020. "Sampling of probability measures in the convex order by Wasserstein projection," Post-Print hal-01589581, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    2. Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
    3. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Martingale Schrödinger bridges and optimal semistatic portfolios," Finance and Stochastics, Springer, vol. 27(1), pages 233-254, January.
    4. Joshua Zoen-Git Hiew & Tongseok Lim & Brendan Pass & Marcelo Cruz de Souza, 2023. "Geometry of vectorial martingale optimal transport and robust option pricing," Papers 2309.04947, arXiv.org, revised Sep 2023.
    5. Tongseok Lim, 2023. "Replication of financial derivatives under extreme market models given marginals," Papers 2307.00807, arXiv.org.
    6. Benjamin Jourdain & Gilles Pagès, 2022. "Convex Order, Quantization and Monotone Approximations of ARCH Models," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2480-2517, December.
    7. Julio Backhoff-Veraguas & Gregoire Loeper & Jan Obloj, 2024. "Geometric Martingale Benamou-Brenier transport and geometric Bass martingales," Papers 2406.04016, arXiv.org.
    8. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org.
    9. Linn Engstrom & Sigrid Kallblad & Johan Karlsson, 2024. "Computation of Robust Option Prices via Structured Multi-Marginal Martingale Optimal Transport," Papers 2406.09959, arXiv.org.
    10. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    11. Marcel Nutz & Johannes Wiesel & Long Zhao, 2022. "Martingale Schr\"odinger Bridges and Optimal Semistatic Portfolios," Papers 2204.12250, arXiv.org.
    12. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Limits of semistatic trading strategies," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 185-205, January.
    13. Marcel Nutz & Johannes Wiesel, 2024. "On the Martingale Schr\"odinger Bridge between Two Distributions," Papers 2401.05209, arXiv.org.
    14. Stephan Eckstein & Michael Kupper, 2018. "Computation of optimal transport and related hedging problems via penalization and neural networks," Papers 1802.08539, arXiv.org, revised Jan 2019.
    15. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    16. Beatrice Acciaio & Mathias Beiglboeck & Gudmund Pammer, 2020. "Weak Transport for Non-Convex Costs and Model-independence in a Fixed-Income Market," Papers 2011.04274, arXiv.org, revised Aug 2023.
    17. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.
    18. Ariel Neufeld & Julian Sester, 2021. "A deep learning approach to data-driven model-free pricing and to martingale optimal transport," Papers 2103.11435, arXiv.org, revised Dec 2022.
    19. Beatrice Acciaio & Mathias Beiglböck & Gudmund Pammer, 2021. "Weak transport for non‐convex costs and model‐independence in a fixed‐income market," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1423-1453, October.
    20. Marcel Nutz & Johannes Wiesel & Long Zhao, 2022. "Limits of Semistatic Trading Strategies," Papers 2204.12251, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:11:y:2023:i:1:p:15:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.