IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/halshs-00368334.html
   My bibliography  Save this paper

Change analysis of a dynamic copula for measuring dependence in multivariate financial data

Author

Listed:
  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Jing Zhang

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, ECNU - East China Normal University [Shangaï])

Abstract

This paper proposes a new approach to measure the dependence in multivariate financial data. Data in finance and insurance often cover a long time period. Therefore, the economic factors may induce some changes inside the dependence structure. Recently, two methods using copulas have been proposed to analyze such changes. The first approach investigates the changes of copula's parameters. The second one tests the changes of copulas by determining the best copulas using moving windows. In this paper we take into account the non stationarity of the data and analyze : (1) the changes of parameters while the copula family keeps static ; (2) the changes of copula family. We propose a series of tests based on conditional copulas and goodness-of-fit (GOF) tests to decide the type of change, and further give the corresponding change analysis. We illustrate our approach with Standard & Poor 500 and Nasdaq indices, and provide dynamic risk measures.

Suggested Citation

  • Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," PSE-Ecole d'économie de Paris (Postprint) halshs-00368334, HAL.
  • Handle: RePEc:hal:pseptp:halshs-00368334
    DOI: 10.1080/14697680902933041
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00368334
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00368334/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/14697680902933041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cyril Caillault, Dominique Guégan, 2009. "Forecasting VaR and Expected Shortfall Using Dynamical Systems: A Risk Management Strategy," Frontiers in Finance and Economics, SKEMA Business School, vol. 6(1), pages 26-50, April.
    2. Cyril Caillault & Dominique Guegan, 2005. "Empirical estimation of tail dependence using copulas: application to Asian markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 489-501.
    3. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    4. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," Post-Print halshs-00368336, HAL.
    5. Granger, Clive W.J. & Terasvirta, Timo & Patton, Andrew J., 2006. "Common factors in conditional distributions for bivariate time series," Journal of Econometrics, Elsevier, vol. 132(1), pages 43-57, May.
    6. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," PSE-Ecole d'économie de Paris (Postprint) halshs-00375765, HAL.
    7. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    8. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    9. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    10. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," Post-Print halshs-00375765, HAL.
    11. Fermanian, Jean-David, 2005. "Goodness-of-fit tests for copulas," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 119-152, July.
    12. Gombay, Edit & Horváth, Lajos, 1996. "On the Rate of Approximations for Maximum Likelihood Tests in Change-Point Models," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 120-152, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yali Dou & Haiyan Liu & Georgios Aivaliotis, 2019. "Dynamic Dependence Modeling in financial time series," Papers 1908.05130, arXiv.org.
    2. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    3. Matteo Iacopini & Dominique Guégan, 2018. "Nonparametric Forecasting of Multivariate Probability Density Functions," Working Papers 2018:15, Department of Economics, University of Venice "Ca' Foscari".
    4. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
    5. Zhu, Bo & Lin, Renda & Deng, Yuanyue & Chen, Pingshe & Chevallier, Julien, 2021. "Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises," Economic Modelling, Elsevier, vol. 105(C).
    6. Aepli, Matthias D. & Füss, Roland & Henriksen, Tom Erik S. & Paraschiv, Florentina, 2017. "Modeling the multivariate dynamic dependence structure of commodity futures portfolios," Journal of Commodity Markets, Elsevier, vol. 6(C), pages 66-87.
    7. Rémillard, Bruno & Papageorgiou, Nicolas & Soustra, Frédéric, 2012. "Copula-based semiparametric models for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 30-42.
    8. Bing-Yue Liu & Qiang Ji & Ying Fan, 2017. "A new time-varying optimal copula model identifying the dependence across markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 437-453, March.
    9. Li, Jie & Li, Ping, 2021. "Empirical analysis of the dynamic dependence between WTI oil and Chinese energy stocks," Energy Economics, Elsevier, vol. 93(C).
    10. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.
    11. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    12. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
    13. Florian Stark & Sven Otto, 2020. "Testing and Dating Structural Changes in Copula-based Dependence Measures," Papers 2011.05036, arXiv.org.
    14. Aepli, Matthias D. & Frauendorfer, Karl & Fuess, Roland & Paraschiv, Florentina, 2015. "Multivariate Dynamic Copula Models: Parameter Estimation and Forecast Evaluation," Working Papers on Finance 1513, University of St. Gallen, School of Finance.
    15. Zhu, Xiaoqian & Xie, Yongjia & Li, Jianping & Wu, Dengsheng, 2015. "Change point detection for subprime crisis in American banking: From the perspective of risk dependence," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 18-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Post-Print halshs-00368334, HAL.
    2. Cyril Caillault, Dominique Guégan, 2009. "Forecasting VaR and Expected Shortfall Using Dynamical Systems: A Risk Management Strategy," Frontiers in Finance and Economics, SKEMA Business School, vol. 6(1), pages 26-50, April.
    3. D. Guegan & J. Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 421-430.
    4. Dominique Guegan & Jing Zhang, 2006. "Change analysis of dynamic copula for measuring dependence in multivariate financial data," Post-Print halshs-00189141, HAL.
    5. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," PSE-Ecole d'économie de Paris (Postprint) halshs-00375765, HAL.
    6. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," Post-Print halshs-00375765, HAL.
    7. Yali Dou & Haiyan Liu & Georgios Aivaliotis, 2019. "Dynamic Dependence Modeling in financial time series," Papers 1908.05130, arXiv.org.
    8. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    9. Hans Manner & Bertrand Candelon, 2010. "Testing For Asset Market Linkages: A New Approach Based On Time‐Varying Copulas," Pacific Economic Review, Wiley Blackwell, vol. 15(3), pages 364-384, August.
    10. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    11. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    12. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
    13. Guoxiang Xu & Wangfeng Gao, 2019. "Financial Risk Contagion in Stock Markets: Causality and Measurement Aspects," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    14. Dominique Guégan, 2009. "A Meta-Distribution for Non-Stationary Samples," CREATES Research Papers 2009-24, Department of Economics and Business Economics, Aarhus University.
    15. Elif F. Acar & Radu V. Craiu & Fang Yao, 2011. "Dependence Calibration in Conditional Copulas: A Nonparametric Approach," Biometrics, The International Biometric Society, vol. 67(2), pages 445-453, June.
    16. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    17. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    18. Wang, Kehluh & Chen, Yi-Hsuan & Huang, Szu-Wei, 2011. "The dynamic dependence between the Chinese market and other international stock markets: A time-varying copula approach," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 654-664, October.
    19. Manner, H., 2007. "Estimation and model selection of copulas with an application to exchange rates," Research Memorandum 056, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    20. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:halshs-00368334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.