IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/halshs-00375765.html
   My bibliography  Save this paper

Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy

Author

Listed:
  • Cyril Caillault

    (Fortis Investments - Fortis investments)

  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Using non-parametric and parametric models, we show that the bivariate distribution of an Asian portfolio is not stable along all the period under study. We suggest several dynamic models to compute two market risk measures, the Value at Risk and the Expected Shortfall: the RiskMetrics methodology, the Multivariate GARCH models, the Multivariate Markov-Switching models, the empirical histogram and the dynamic copulas. We discuss the choice of the best method with respect to the policy management of bank supervisors. The copula approach seems to be a good compromise between all these models. It permits taking financial crises into account and obtaining a low capital requirement during the most important crises.

Suggested Citation

  • Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," PSE-Ecole d'économie de Paris (Postprint) halshs-00375765, HAL.
  • Handle: RePEc:hal:pseptp:halshs-00375765
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00375765
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00375765/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    2. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    3. Granger, Clive W.J. & Terasvirta, Timo & Patton, Andrew J., 2006. "Common factors in conditional distributions for bivariate time series," Journal of Econometrics, Elsevier, vol. 132(1), pages 43-57, May.
    4. Cyril Caillault & Dominique Guegan, 2005. "Empirical estimation of tail dependence using copulas: application to Asian markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 489-501.
    5. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," Post-Print halshs-00368336, HAL.
    6. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    7. Peter F. Christoffersen & Francis X. Diebold & Til Schuermann, 1998. "Horizon problems and extreme events in financial risk management," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 109-118.
    8. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    9. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
    13. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk (3): Their Validity under Market Stress," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(3), pages 181-237, October.
    14. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
    15. Fermanian, Jean-David, 2005. "Goodness-of-fit tests for copulas," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 119-152, July.
    16. M. Gilli & E. Kellezi & H. Hysi, 2006. "A Data-Driven Optimization Heuristic for Downside Risk Minimization," Computing in Economics and Finance 2006 355, Society for Computational Economics.
    17. Raymond Brummelhuis & Dominique Guegan, 2005. "Multi-period conditional distribution functions for heteroscedastic models with applications to VaR," Post-Print halshs-00179336, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yali Dou & Haiyan Liu & Georgios Aivaliotis, 2019. "Dynamic Dependence Modeling in financial time series," Papers 1908.05130, arXiv.org.
    2. Cyril Caillault, Dominique Guégan, 2009. "Forecasting VaR and Expected Shortfall Using Dynamical Systems: A Risk Management Strategy," Frontiers in Finance and Economics, SKEMA Business School, vol. 6(1), pages 26-50, April.
    3. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Post-Print halshs-00368334, HAL.
    4. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," PSE-Ecole d'économie de Paris (Postprint) halshs-00368334, HAL.
    5. Dominique Guegan, 2010. "Value at Risk Computation in a Non-Stationary Setting," PSE-Ecole d'économie de Paris (Postprint) halshs-00511995, HAL.
    6. Dominique Guegan & Wayne Tarrant, 2012. "On the Necessity of Five Risk Measures," PSE-Ecole d'économie de Paris (Postprint) halshs-00721339, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cyril Caillault, Dominique Guégan, 2009. "Forecasting VaR and Expected Shortfall Using Dynamical Systems: A Risk Management Strategy," Frontiers in Finance and Economics, SKEMA Business School, vol. 6(1), pages 26-50, April.
    2. Cyril Caillault & Dominique Guegan, 2009. "Forecasting VaR and Expected Shortfall using Dynamical Systems: A Risk Management Strategy," Post-Print halshs-00375765, HAL.
    3. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Post-Print halshs-00368334, HAL.
    4. Dominique Guegan & Jing Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," PSE-Ecole d'économie de Paris (Postprint) halshs-00368334, HAL.
    5. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    6. Dominique Guegan, 2007. "Global and local stationary modelling in finance: theory and empirical evidence," Post-Print halshs-00187875, HAL.
    7. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    8. D. Guegan & J. Zhang, 2010. "Change analysis of a dynamic copula for measuring dependence in multivariate financial data," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 421-430.
    9. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," Post-Print hal-00511965, HAL.
    10. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," PSE-Ecole d'économie de Paris (Postprint) hal-00511965, HAL.
    11. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    12. Funke, Michael & Shu, Chang & Cheng, Xiaoqiang & Eraslan, Sercan, 2015. "Assessing the CNH–CNY pricing differential: Role of fundamentals, contagion and policy," Journal of International Money and Finance, Elsevier, vol. 59(C), pages 245-262.
    13. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    14. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    15. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    16. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    17. Kostyrka, Andreï & Malakhov, Dmitry, 2021. "Was there ever a shift: Empirical analysis of structural-shift tests for return volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 110-139.
    18. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    19. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    20. Caroline Michere Ndei & Stephen Muchina & Kennedy Waweru, 2019. "Modeling stock market return volatility in the presence of structural breaks: Evidence from Nairobi Securities Exchange, Kenya," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 8(5), pages 156-171, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:halshs-00375765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.