IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02283374.html
   My bibliography  Save this paper

American Step Options

Author

Listed:
  • Jerôme Detemple

    (BU - Boston University [Boston])

  • Souleymane Laminou Abdou

    (ESC [Rennes] - ESC Rennes School of Business)

  • Franck Moraux

    (CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper examines the valuation of American knock-out and knock-in step options. The structures of the immediate exercise regions of the various contracts are identified. Typical properties of American vanilla calls, such as uniqueness of the optimal exercise boundary, upconnectedness of the exercise region or convexity of its t-section, are shown to fail in some cases. Early exercise premium representations of step option prices, involving the Laplace transforms of the joint laws of Brownian motion and its occupation times, are derived. Systems of coupled integral equations for the components of the exercise boundary are deduced. Numerical implementations document the behavior of the price and the hedging policy. The paper is the first to prove that finite maturity exotic American Options written on a single underlying asset can have multiple disconnected exercise regions described by a triplet of coupled boundaries.

Suggested Citation

  • Jerôme Detemple & Souleymane Laminou Abdou & Franck Moraux, 2020. "American Step Options," Post-Print halshs-02283374, HAL.
  • Handle: RePEc:hal:journl:halshs-02283374
    DOI: 10.1016/j.ejor.2019.09.009
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02283374
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-02283374/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ejor.2019.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    2. Anna Battauz & Marzia De Donno & Alessandro Sbuelz, 2015. "Real Options and American Derivatives: The Double Continuation Region," Management Science, INFORMS, vol. 61(5), pages 1094-1107, May.
    3. Anna Battauz & Marzia De Donno & Alessandro Sbuelz, 2012. "Real options with a double continuation region," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 465-475, April.
    4. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    5. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    6. Giuseppe Campolieti & Roman N. Makarov & Karl Wouterloot, 2013. "Pricing Step Options under the CEV and other Solvable Diffusion Models," Papers 1302.3771, arXiv.org.
    7. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    8. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    9. Marzia De Donno & Zbigniew Palmowski & Joanna Tumilewicz, 2020. "Double continuation regions for American and Swing options with negative discount rate in Lévy models," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 196-227, January.
    10. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    11. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    12. Peter Carr & Vadim Linetsky, 2000. "The Valuation of Executive Stock Options in an Intensity-Based Framework," Review of Finance, European Finance Association, vol. 4(3), pages 211-230.
    13. Kay Giesecke & Dmitry Smelov, 2013. "Exact Sampling of Jump Diffusions," Operations Research, INFORMS, vol. 61(4), pages 894-907, August.
    14. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    15. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    16. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    17. Broadie, Mark & Detemple, Jerome, 1995. "American Capped Call Options on Dividend-Paying Assets," The Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 161-191.
    18. Sesana, Debora & Marazzina, Daniele & Fusai, Gianluca, 2014. "Pricing exotic derivatives exploiting structure," European Journal of Operational Research, Elsevier, vol. 236(1), pages 369-381.
    19. Trigeorgis, Lenos & Tsekrekos, Andrianos E., 2018. "Real Options in Operations Research: A Review," European Journal of Operational Research, Elsevier, vol. 270(1), pages 1-24.
    20. G. Campolieti & R. Makarov & K. Wouterloot, 2013. "Pricing Step Options Under The Cev And Other Solvable Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-36.
    21. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    22. Kim, In Joon, 1990. "The Analytic Valuation of American Options," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    23. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    24. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    25. Date, Paresh & Islyaev, Suren, 2015. "A fast calibrating volatility model for option pricing," European Journal of Operational Research, Elsevier, vol. 243(2), pages 599-606.
    26. Dwight Grant & Gautam Vora & David Weeks, 1997. "Path-Dependent Options: Extending the Monte Carlo Simulation Approach," Management Science, INFORMS, vol. 43(11), pages 1589-1602, November.
    27. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    28. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2012. "A general control variate method for option pricing under Lévy processes," European Journal of Operational Research, Elsevier, vol. 221(2), pages 368-377.
    29. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Jinye & Huang, Weizhang & Ma, Jingtang, 2024. "An efficient and provable sequential quadratic programming method for American and swing option pricing," European Journal of Operational Research, Elsevier, vol. 316(1), pages 19-35.
    2. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    3. Ebina, Takeshi & Matsushima, Noriaki & Nishide, Katsumasa, 2022. "Demand uncertainty, product differentiation, and entry timing under spatial competition," European Journal of Operational Research, Elsevier, vol. 303(1), pages 286-297.
    4. Carlos Esparcia & Elena Ibañez & Francisco Jareño, 2020. "Volatility Timing: Pricing Barrier Options on DAX XETRA Index," Mathematics, MDPI, vol. 8(5), pages 1-25, May.
    5. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
    6. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Papers 2006.00282, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2020. "Early exercise boundaries for American-style knock-out options," European Journal of Operational Research, Elsevier, vol. 285(2), pages 753-766.
    2. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    3. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    4. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    5. Mark Broadie & Jérôme Detemple, 1996. "American Options on Dividend-Paying Assets," CIRANO Working Papers 96s-16, CIRANO.
    6. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    7. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    8. B. Gao J. Huang, "undated". "The Valuation of American Barrier Options Using the Decomposition Technique," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-002, New York University, Leonard N. Stern School of Business-.
    9. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    10. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    11. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
    12. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    13. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    14. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    15. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    16. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    17. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    18. Cheng Cai & Tiziano De Angelis & Jan Palczewski, 2021. "The American put with finite-time maturity and stochastic interest rate," Papers 2104.08502, arXiv.org, revised Feb 2024.
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.

    More about this item

    Keywords

    Multiple exercise boundaries.; Risk management; Step options; Multiple exercise boundaries; American options; Occupation time;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02283374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.