IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/96s-16.html
   My bibliography  Save this paper

American Options on Dividend-Paying Assets

Author

Listed:
  • Mark Broadie
  • Jérôme Detemple

Abstract

We provide a comprehensive treatment of option pricing with particular emphasis on the valuation of American options on dividend-paying essets. We begin by reviewing valuation principles for European contingent claims in a financial market in which the underlying asset price follows an Itô process and the interest rate is stochastic. Then this anlysis is extended to the valuation of American contingent claims. In particular, the early exercise premium and the delayed exercise premium representations of the American option price are presented. These results are specialized in the case of the standard market model, i.e., when the underlying asset price follows a geometric Brownian motion process and the interest rate is constant. American capped options with constant and growing caps are then analyzed. Valuation formulas are first provided for capped options on dividend-paying assets in the context of the standard market model. Previously unpublished results are then presented for capped options on nodividend-paying assets when the underlying asset price follows an Itô process with stochastic volatility and the cap's growth rate is an adapted stochastic process. Nous présentons un traitement compréhensif de l'évaluation des options américaines sur des actifs qui payent des dividendes. Nous passons tout d'abord en revue les principes d'évaluation de titres contingents européens dans le cadre d'un marché financier dans lequel le prix des actifs sous-jacents suit des processus d'Itô et le taux d'intérêt est stochastique. L'analyse est ensuite généralisée à l'évaluation des titres contingents américains. Nous présentons, en particulier, les représentations de prime d'exercice prématuré et de prime d'exercice délayé, du prix de l'option américaine. Ces résultats sont spécialisés au cas du modèle de marché standard, c'est-à-dire lorsque le prix de l'actif sous-jacent suit un mouvement Brownien géométrique et le taux d'intérêt est constant. Les options américaines plafonnées, avec plafond constant ou croissant, sont ensuite analysées. Des formules d'évaluation sont tout d'abord présentées pour les options plafonnées sur des actifs à dividendes dans le contexte du modèle standard. Des résultats nouveaux sont ensuite présentés pour les options plafonnées sur des actifs sans dividende lorsque le prix du sous-jacent suit un processus d'Itô à volatilité stochastique et le taux de croissance du plafond est un processus stochastique adapté.

Suggested Citation

  • Mark Broadie & Jérôme Detemple, 1996. "American Options on Dividend-Paying Assets," CIRANO Working Papers 96s-16, CIRANO.
  • Handle: RePEc:cir:cirwor:96s-16
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/96s-16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Orlin Grabbe, J., 1983. "The pricing of call and put options on foreign exchange," Journal of International Money and Finance, Elsevier, vol. 2(3), pages 239-253, December.
    2. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    3. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    4. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    5. Kim, In Joon, 1990. "The Analytic Valuation of American Options," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    6. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    9. Orlin J. Grabbe, "undated". "The Pricing of Call and Put Options on Foreign Exchange," Rodney L. White Center for Financial Research Working Papers 06-83, Wharton School Rodney L. White Center for Financial Research.
    10. Roll, Richard, 1977. "An analytic valuation formula for unprotected American call options on stocks with known dividends," Journal of Financial Economics, Elsevier, vol. 5(2), pages 251-258, November.
    11. Peter P. Carr & Robert A. Jarrow, 2008. "The Stop-Loss Start-Gain Paradox and Option Valuation: A new Decomposition into Intrinsic and Time Value," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 4, pages 61-84, World Scientific Publishing Co. Pte. Ltd..
    12. Broadie, Mark & Detemple, Jerome, 1995. "American Capped Call Options on Dividend-Paying Assets," The Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 161-191.
    13. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    14. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "Theory of Rational Option Pricing: II (Revised: 1-96)," Rodney L. White Center for Financial Research Working Papers 11-95, Wharton School Rodney L. White Center for Financial Research.
    15. Marek Rutkowski, 1994. "The Early Exercise Premium Representation Of Foreign Market American Options1," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 313-325, October.
    16. Schwartz, Eduardo S., 1977. "The valuation of warrants: Implementing a new approach," Journal of Financial Economics, Elsevier, vol. 4(1), pages 79-93, January.
    17. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14, April.
    18. Orlin J. Grabbe, "undated". "The Pricing of Call and Put Options on Foreign Exchange," Rodney L. White Center for Financial Research Working Papers 6-83, Wharton School Rodney L. White Center for Financial Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    3. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    4. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
    5. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    6. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    9. Gao, Bin & Huang, Jing-zhi & Subrahmanyam, Marti, 2000. "The valuation of American barrier options using the decomposition technique," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1783-1827, October.
    10. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    11. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    12. B. Gao J. Huang, "undated". "The Valuation of American Barrier Options Using the Decomposition Technique," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-002, New York University, Leonard N. Stern School of Business-.
    13. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    14. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
    15. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    16. Peter P. Carr & Zura Kakushadze, 2017. "FX options in target zones," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1477-1486, October.
    17. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2020. "Early exercise boundaries for American-style knock-out options," European Journal of Operational Research, Elsevier, vol. 285(2), pages 753-766.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    20. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:96s-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.