IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01474166.html
   My bibliography  Save this paper

Modeling Bike Sharing System using Built Environment Factors

Author

Listed:
  • Tien Dung Tran

    (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

  • Nicolas Ovtracht

    (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

  • Bruno Faivre d'Arcier

    (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper aims to present a modeling of bike sharing demand at station level in the city of Lyon. Robust linear regression models were used in order to predict the flows of each station. The data used in this project consists of over 6 million bike sharing trips recorded in 2011. The built environment variables used in the model are determined in a buffer zone of 300 meters around each bike sharing station. In order to estimate the bike sharing flow, we use the method of linear regression during the peak periods of a weekday. The results show that bike sharing is principally used for commuting purposes by long term subscribers while short term subscriber's trips purposes are more varied. The combination between bike sharing and train seems to be an important inter-modality. An interesting finding is that student is an important user of bike sharing. We found that there were different types of bikesharing usage which are influenced by socio-economic factors depending on the period within the day and type of subscribers. The present findings could be useful for others cities which want to adopt a bikesharing system and also for a better planning and operation of existing systems. Further, the solutions to encourage the use of bikesharing will be various depending on type of subscribers. The approach in this paper can be useful for estimating car-sharing demand.

Suggested Citation

  • Tien Dung Tran & Nicolas Ovtracht & Bruno Faivre d'Arcier, 2015. "Modeling Bike Sharing System using Built Environment Factors," Post-Print halshs-01474166, HAL.
  • Handle: RePEc:hal:journl:halshs-01474166
    DOI: 10.1016/j.procir.2015.02.156
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01474166
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01474166/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.procir.2015.02.156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    2. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    3. Jesus Gonzalez-Feliu & Joëlle Morana, 2010. "Collaborative transportation sharing: from theory to practice via a case study from France," Post-Print halshs-00460923, HAL.
    4. Yves Crozet & Aurélie Mercier & Nicolas Ovtracht, 2012. "Accessibility: a key indicator to assess the past and future of urban mobility," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 15, pages 263-279, Edward Elgar Publishing.
    5. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    6. Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), 2012. "Accessibility Analysis and Transport Planning," Books, Edward Elgar Publishing, number 14718.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    2. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    3. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    4. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Examining the Impact of Sample Size in the Analysis of Bicycle Sharing Systems," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319259, Transportation Research Forum.
    5. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    6. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    7. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    8. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    9. Qiu, Waishan & Chang, Hector, 2021. "The interplay between dockless bikeshare and bus for small-size cities in the US: A case study of Ithaca," Journal of Transport Geography, Elsevier, vol. 96(C).
    10. Fitzová, Hana & Kališ, Richard & Pařil, Vilém & Fila, Milan, 2024. "Entry and competition in the European bike-sharing industry," Transport Policy, Elsevier, vol. 149(C), pages 100-107.
    11. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    12. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    13. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    14. Ainhoa Serna & Tomas Ruiz & Jon Kepa Gerrikagoitia & Rosa Arroyo, 2019. "Identification of Enablers and Barriers for Public Bike Share System Adoption using Social Media and Statistical Models," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    15. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.
    16. Lee, Carmen Kar Hang & Leung, Eric Ka Ho, 2023. "Spatiotemporal analysis of bike-share demand using DTW-based clustering and predictive analytics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    17. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    18. Sohrabi, Soheil & Paleti, Rajesh & Balan, Lacramioara & Cetin, Mecit, 2020. "Real-time prediction of public bike sharing system demand using generalized extreme value count model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 325-336.
    19. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    20. Shahram Heydari & Garyfallos Konstantinoudis & Abdul Wahid Behsoodi, 2021. "Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London," Papers 2107.11589, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01474166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.