IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00592118.html
   My bibliography  Save this paper

A cross entropy multiagent learning algorithm for solving vehicle routing problems with time windows

Author

Listed:
  • Tai-Yu Ma

    (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

Abstract

The vehicle routing problem with time windows (VRPTW) has been the subject of intensive study because of its importance in real applications. In this paper, we propose a cross entropy multiagent learning algorithm, which considers an optimum solution as a rare event to be learned. The routing policy is node-distributed, controlled by a set of parameterized probability distribution functions. Based on the performance of experienced tours of vehicle agents, these parameters are updated iteratively by minimizing Kullback-Leibler cross entropy in order to generate better solutions in next iterations. When applying the proposed algorithm on Solomon's 100-customer problem set, it shows outperforming results in comparison with the classical CE approach. Moreover, this method needs only very small number of parameter settings. Its implementation is also relatively simple and flexible to solve other vehicle routing problems under various dynamic scenarios.

Suggested Citation

  • Tai-Yu Ma, 2011. "A cross entropy multiagent learning algorithm for solving vehicle routing problems with time windows," Post-Print halshs-00592118, HAL.
  • Handle: RePEc:hal:journl:halshs-00592118
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00592118v2
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00592118v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    2. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    3. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    4. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    5. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    6. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    7. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    8. Braysy, Olli & Hasle, Geir & Dullaert, Wout, 2004. "A multi-start local search algorithm for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 159(3), pages 586-605, December.
    9. Homberger, Jorg & Gehring, Hermann, 2005. "A two-phase hybrid metaheuristic for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 162(1), pages 220-238, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liam Graham, 2011. "Individual rationality, model-consistent expectations and learning," CDMA Working Paper Series 201112, Centre for Dynamic Macroeconomic Analysis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    2. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    4. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    5. Zäpfel, Günther & Bögl, Michael, 2008. "Multi-period vehicle routing and crew scheduling with outsourcing options," International Journal of Production Economics, Elsevier, vol. 113(2), pages 980-996, June.
    6. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    7. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    8. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    9. Zhenzhen Zhang & Zhixing Luo & Hu Qin & Andrew Lim, 2019. "Exact Algorithms for the Vehicle Routing Problem with Time Windows and Combinatorial Auction," Transportation Science, INFORMS, vol. 53(2), pages 427-441, March.
    10. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    11. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    12. Schneider, Michael, 2016. "The vehicle-routing problem with time windows and driver-specific times," European Journal of Operational Research, Elsevier, vol. 250(1), pages 101-119.
    13. Olli Bräysy & Wout Dullaert & Geir Hasle & David Mester & Michel Gendreau, 2008. "An Effective Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 371-386, August.
    14. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    15. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    16. Reil, Sebastian & Bortfeldt, Andreas & Mönch, Lars, 2018. "Heuristics for vehicle routing problems with backhauls, time windows, and 3D loading constraints," European Journal of Operational Research, Elsevier, vol. 266(3), pages 877-894.
    17. Cheang, Brenda & Gao, Xiang & Lim, Andrew & Qin, Hu & Zhu, Wenbin, 2012. "Multiple pickup and delivery traveling salesman problem with last-in-first-out loading and distance constraints," European Journal of Operational Research, Elsevier, vol. 223(1), pages 60-75.
    18. Francesco P. Deflorio & Jesus Gonzalez-Feliu & Roberto Tadei & Simone Amico, 2009. "Service quality planning for freight distribution with time windows in large networks," Working Papers halshs-01056187, HAL.
    19. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    20. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00592118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.