IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v39y2005i2p206-232.html
   My bibliography  Save this article

Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints

Author

Listed:
  • T. Ibaraki

    (Department of Informatics, School of Science and Technology, Kwansei Gakuen University, 2-1 Gakuen, Sanda 669-1337, Japan)

  • S. Imahori

    (Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan)

  • M. Kubo

    (Department of Logistics and Information Engineering, Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Kouto-ku, Tokyo 135-8533, Japan)

  • T. Masuda

    (Communication & High Technology, Accenture, Nihon Seimei Akasaka Daini Bldg., 7-1-16 Akasaka Minato-ku, Tokyo 107-8672, Japan)

  • T. Uno

    (National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan)

  • M. Yagiura

    (Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan)

Abstract

We propose local search algorithms for the vehicle routing problem with soft time-window constraints. The time-window constraint for each customer is treated as a penalty function, which is very general in the sense that it can be nonconvex and discontinuous as long as it is piecewise linear. In our algorithm, we use local search to assign customers to vehicles and to find orders of customers for vehicles to visit. Our algorithm employs an advanced neighborhood, called the cyclic-exchange neighborhood, in addition to standard neighborhoods for the vehicle routing problem. After fixing the order of customers for a vehicle to visit, we must determine the optimal start times of processing at customers so that the total penalty is minimized. We show that this problem can be efficiently solved by using dynamic programming, which is then incorporated in our algorithm. We report computational results for various benchmark instances of the vehicle routing problem. The generality of time-window constraints allows us to handle a wide variety of scheduling problems. As an example, we mention in this paper an application to a production scheduling problem with inventory cost, and report computational results for real-world instances.

Suggested Citation

  • T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
  • Handle: RePEc:inm:ortrsc:v:39:y:2005:i:2:p:206-232
    DOI: 10.1287/trsc.1030.0085
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1030.0085
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1030.0085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul M. Thompson & Harilaos N. Psaraftis, 1993. "Cyclic Transfer Algorithm for Multivehicle Routing and Scheduling Problems," Operations Research, INFORMS, vol. 41(5), pages 935-946, October.
    2. Michael R. Garey & Robert E. Tarjan & Gordon T. Wilfong, 1988. "One-Processor Scheduling with Symmetric Earliness and Tardiness Penalties," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 330-348, May.
    3. Yiannis A. Koskosidis & Warren B. Powell & Marius M. Solomon, 1992. "An Optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints," Transportation Science, INFORMS, vol. 26(2), pages 69-85, May.
    4. J. Steve Davis & John J. Kanet, 1993. "Single‐machine scheduling with early and tardy completion costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 85-101, February.
    5. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    6. Marius M. Solomon & Jacques Desrosiers, 1988. "Survey Paper---Time Window Constrained Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 22(1), pages 1-13, February.
    7. Christophe Duhamel & Jean-Yves Potvin & Jean-Marc Rousseau, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Backhauls and Time Windows," Transportation Science, INFORMS, vol. 31(1), pages 49-59, February.
    8. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    9. Jean-Yves Potvin & Tanguy Kervahut & Bruno-Laurent Garcia & Jean-Marc Rousseau, 1996. "The Vehicle Routing Problem with Time Windows Part I: Tabu Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 158-164, May.
    10. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    11. Ravindra K. Ahuja & James B. Orlin, 2001. "A Fast Scaling Algorithm for Minimizing Separable Convex Functions Subject to Chain Constraints," Operations Research, INFORMS, vol. 49(5), pages 784-789, October.
    12. Jean-Yves Potvin & Samy Bengio, 1996. "The Vehicle Routing Problem with Time Windows Part II: Genetic Search," INFORMS Journal on Computing, INFORMS, vol. 8(2), pages 165-172, May.
    13. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    14. Martin W. P. Savelsbergh, 1992. "The Vehicle Routing Problem with Time Windows: Minimizing Route Duration," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 146-154, May.
    15. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    2. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    3. Olli Bräysy, 2003. "A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 347-368, November.
    4. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    5. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    6. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    7. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    8. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    9. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    10. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    11. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.
    12. Nguyen, Phuong Khanh & Crainic, Teodor Gabriel & Toulouse, Michel, 2013. "A tabu search for Time-dependent Multi-zone Multi-trip Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 231(1), pages 43-56.
    13. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    14. Michelle Dunbar & Simon Belieres & Nagesh Shukla & Mehrdad Amirghasemi & Pascal Perez & Nishikant Mishra, 2020. "A genetic column generation algorithm for sustainable spare part delivery: application to the Sydney DropPoint network," Annals of Operations Research, Springer, vol. 290(1), pages 923-941, July.
    15. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    16. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    17. Fröhlich von Elmbach, Alexander & Scholl, Armin & Walter, Rico, 2019. "Minimizing the maximal ergonomic burden in intra-hospital patient transportation," European Journal of Operational Research, Elsevier, vol. 276(3), pages 840-854.
    18. Schneider, Michael, 2016. "The vehicle-routing problem with time windows and driver-specific times," European Journal of Operational Research, Elsevier, vol. 250(1), pages 101-119.
    19. Olli Bräysy & Wout Dullaert & Geir Hasle & David Mester & Michel Gendreau, 2008. "An Effective Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix Vehicle-Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 42(3), pages 371-386, August.
    20. Han, Shuihua & Zhao, Ling & Chen, Kui & Luo, Zong-wei & Mishra, Deepa, 2017. "Appointment scheduling and routing optimization of attended home delivery system with random customer behavior," European Journal of Operational Research, Elsevier, vol. 262(3), pages 966-980.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:39:y:2005:i:2:p:206-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.