IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-02377886.html
   My bibliography  Save this paper

Machine Learning et nouvelles sources de données pour le scoring de crédit

Author

Listed:
  • Christophe Hurlin

    (LEO - Laboratoire d'Économie d'Orleans [UMR7322] - UO - Université d'Orléans - UT - Université de Tours - CNRS - Centre National de la Recherche Scientifique)

  • Christophe Pérignon

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this article, we discuss the contribution of Machine Learning techniques and new data sources (New Data) to credit-risk modelling. Credit scoring was historically one of the first fields of application of Machine Learning techniques. Today, these techniques permit to exploit new sources of data made available by the digitalization of customer relationships and social networks. The combination of the emergence of new methodologies and new data has structurally changed the credit industry and favored the emergence of new players. First, we analyse the incremental contribution of Machine Learning techniques per se. We show that they lead to significant productivity gains but that the forecasting improvement remains modest. Second, we quantify the contribution of the "datadiversity", whether or not these new data are exploited through Machine Learning. It appears that some of these data contain weak signals that significantly improve the quality of the assessment of borrowers' creditworthiness. At the microeconomic level, these new approaches promote financial inclusion and access to credit for the most vulnerable borrowers. However, Machine Learning applied to these data can also lead to severe biases and discrimination.

Suggested Citation

  • Christophe Hurlin & Christophe Pérignon, 2019. "Machine Learning et nouvelles sources de données pour le scoring de crédit," Working Papers halshs-02377886, HAL.
  • Handle: RePEc:hal:wpaper:halshs-02377886
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02377886v2
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-02377886v2/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
    2. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    3. Emmanuel Flachaire & Gilles Hacheme & Sullivan Hu'e & S'ebastien Laurent, 2022. "GAM(L)A: An econometric model for interpretable Machine Learning," Papers 2203.11691, arXiv.org.
    4. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    5. Fraisse, Henri & Laporte, Matthias, 2022. "Return on investment on artificial intelligence: The case of bank capital requirement," Journal of Banking & Finance, Elsevier, vol. 138(C).

    More about this item

    Keywords

    Machine Learning ML; Credit scoring; New data; Nouvelles données; Scoring de crédit; Apprentissage automatique;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-02377886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.